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Economic inequality is at high levels around the world and con-
tinues to rise in many countries1,2. A wealth of prior research 
has explored the outcomes of such high inequality levels. 

While initial research has often found negative associations with 
wide-ranging policy outcomes (for an overview, see ref. 3), subse-
quent work has arrived at more conflicting findings. For example, 
different studies have found that the relationship between economic 
inequality and obesity is both positive4 and negative5. Similarly, dif-
ferent studies have found that economic inequality is associated with 
both lower and higher subjective well-being (for a meta-analysis, 
see ref. 6). Finally, some studies have found that economic inequality 
is related to less prosociality7, which other studies do not corrobo-
rate8. While these studies differ in their conclusions, they all share 
one attribute: they measure and operationalize inequality through 
a single-parameter measure, predominantly the Gini coefficient. 
Here we suggest that this singular focus on the Gini coefficient may 
lie at the heart of several of these conflicting findings of inequality 
and its correlates. We demonstrate not only that single-parameter 
inequality measures such as the Gini coefficient are unable to cap-
ture crucial information contained in income distributions but also 
that moving beyond these types of measures by replacing them with 
more comprehensive measures can help resolve extant tensions  
in the field.

Across the social sciences, the Gini coefficient is by far the most 
popular measure of economic inequality9 and is often used to inform 
policy debates10 and justify political decisions (for example, see  
ref. 11). Several reasons exist for the widespread use of the Gini coef-
ficient, including its ease of interpretation12–14 and access, as many 
official bureaus of statistics across the world publish this summary 
statistic regularly15. This could result in a self-sustaining feedback 
loop: because of the widespread availability of the Gini coefficient, 
researchers frequently use this inequality measure in their work; 
this may lead statistics bureaus to continue providing this measure 

to researchers instead of exploring potential alternative or addi-
tional inequality measures. The widespread prevalence of the Gini 
coefficient may even give the impression that this measure is the 
only or best way to capture inequality16.

However, several drawbacks of the Gini coefficient are 
well-known12,17,18. One of the main criticisms pertains to its inabil-
ity to adequately distinguish between different income distributions 
that result in the same Gini coefficient9,12,14,17,19,20. This shortcoming 
becomes particularly apparent when investigating income distribu-
tions through the lens of Lorenz curves, which map absolute income 
distributions on a relative scale (see our discussion of Fig. 1 below; 
see also ref. 21). While in some cases, different distributions resulting 
in the same Gini coefficient may be a desirable property, we argue 
that focusing only on the overall concentration of inequality—as 
captured by the Gini coefficient13—is insufficient to fully appreci-
ate how inequality affects important policy outcomes. Note that this 
problem does not plague the Gini coefficient alone: all inequality 
measures require some decisions around the compression of infor-
mation, which is particularly salient in single-parameter measures 
of inequality, as they attempt to condense a lot of information into 
a single parameter17. As a result, critical aspects of income distribu-
tions may be missed by the Gini coefficient, which, we propose, may 
partially underlie prior mixed findings in associations with policy 
outcomes. We argue that this shortcoming, among others12,18, there-
fore necessitates alternative approaches to more comprehensively 
capture the non-equal distribution of income.

Alternatives to the Gini coefficient in prior literature predomi-
nantly build on two streams of research. First, some prior work 
suggests replacing the Gini coefficient with other single-parameter 
measures of inequality9,22,23. Many such alternative measures have 
desirable properties, such as the Zanardi index, which refines the 
Gini coefficient to capture asymmetries in an income distribution24. 
However, there is no clear consensus on what alternative measure 
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to use25, in part because no clear criteria have been established to 
decide which measure is best. The second approach suggests using 
the Gini coefficient in combination with another measure17. For 
example, Sitthiyot and Holasut14 suggest using the Gini coefficient 
and the income share held by the top and bottom 10% of the pop-
ulation as a joint inequality measure. The attempt to use multiple 
measures of inequality simultaneously to capture more features 
of the income distribution is intuitively appealing; however, this 
approach lacks a systematic analysis to ascertain whether it truly 
captures all relevant information contained in an income distribu-
tion. Indeed, for this approach to be informative, multiple measures 
of inequality need to convey mostly unique information about the 
income distribution.

Here we propose a systematic approach to identify which inequal-
ity measure is the most appropriate for a given dataset by captur-
ing the greatest amount of relevant information about an empirical 
income distribution. Any measure of inequality requires researchers 
to define how to bundle relevant information present in the income 
distribution into key parameters, and to determine what attributes 
of the income distribution these should represent. Our starting 
point is the notion that income distributions that exhibit inequality 
are, by definition, non-equal, and that capturing their shape is of key 
interest in measuring inequality. Put differently, we conceptualize 
the path from income distributions to inequality measures as a data 
reduction task. We note that this approach does not focus on axiom-
atic properties that need to be satisfied for an appropriate measure 
of inequality but instead is a bottom-up and data-driven approach 
that draws on the shape of actual income distributions. Our goal is 
to bundle relevant information present in income distributions into 
a reasonable number of numerical values for later use as measures 
of inequality to evaluate whether the different attributes of income 
distributions captured through this approach explain meaningful 
variance in important outcomes.

To do so, we employ a jointly theoretically derived and data- 
driven approach to systematically determine how many and what 
kind of parameters should be used to capture relevant informa-
tion contained in an income distribution. We first draw on prior 
research to examine theoretical models that have been proposed to 
model income distributions. Next, we combine data from several 
sources to create a unique dataset with N = 3,056 real-world income 
distributions at the US county level, including uniquely fine-grained 
information on top-income earners. This allows us to combine 
maximum likelihood estimation (MLE) with a systematic evalu-
ation framework based on information criteria to determine the 
optimal parameters necessary to characterize income distributions. 
Finally, we move to real-world applications: we study the correla-
tions of the best-fitting model in our dataset with 100 wide-ranging 
policy outcomes, allowing us to shed light on extant tensions in the 
literature and highlighting the importance of moving beyond just 
evaluating how much inequality exists towards considering where 
inequality is concentrated.

To illustrate the benefits of moving beyond existing inequal-
ity measures, consider the two income distributions depicted in 
Fig. 1, which are based on real-world data from two US counties 
(Putnam County, Ohio, and Chambers County, Texas). We chose 
these counties because, when measured by the Gini coefficient, 
they seem to exhibit the same level of inequality (that is, a Gini 
of approximately 0.46). However, when considering the income 
bucket representation (Fig. 1a) and especially the Lorenz curve 
representation of incomes (Fig. 1b), it becomes evident that the 
distribution of income differs between the counties. Figure 1a 
shows that, at different income levels, the two counties share dif-
ferent levels of overlap in the number of people earning a certain 
amount of money. While income bucket representations are sim-
ple and easy to understand, they are less suitable for comparing 
different income distributions.

a bIncome bucket representation Lorenz curve representation

Exemplary income distributions exhibiting approximately the same Gini but different Ortega parameters
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Fig. 1 | Plotting the distributions of income for Putnam County, Ohio, and Chambers County, texas. a, Income bucket representation: the proportion of 
earners per income bucket is shown for two counties that have approximately the same Gini coefficient (0.46). b, Lorenz curve representation: the same 
income distributions are plotted as Lorenz curves, which reveals that while overall levels of inequality are the same for both distributions (that is, the same 
area under the curve), where inequality is concentrated differs between the counties.
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Figure 1b displays the corresponding Lorenz curves of the two 
counties, depicting the cumulative share that each percentile of the 
income distribution holds. Lorenz curves are particularly useful for 
comparing income distributions because they are scale-free and can 
be used regardless of the average income in a population. Lorenz 
curves also visually depict why the Gini coefficients of the income 
distributions are the same, given that it is proportional to the area 
spanned between the diagonal line and the Lorenz curve. This area 
is equally large for both counties, which is why they yield the same 
Gini coefficients. However, the Gini coefficient does not take into 
account that the Lorenz curve of Putnam County, Ohio, bends 
more intensely within the top of the income distribution, whereas 
the Lorenz curve of Chambers County, Texas, is more strongly bent 
within the bottom of the income distribution. For example, we can 
see from the estimated Lorenz curves that the top 10% of the popu-
lation in Putnam County, Ohio, possess 38.7% of the total income in 
that county, whereas in Chambers County, Texas, the top 10% hold 
32.1% of total income. Given their useful features, we subsequently 
aim at representing income distributions using Lorenz curves.

results
Fitting Lorenz curves. We begin by sourcing an extensive range 
of proposed Lorenz curve models in the literature as a starting 
point for our data-driven approach (Table 1), arriving at a total of 
17 different models. Then, using MLE (Methods), we estimate and 
subsequently evaluate the fit of each model in every county in our 
dataset with a Borda count voting procedure, assigning more points 
to better-fitting models. The Borda count enables us to identify the 
‘winning’ model among the proposed Lorenz curve models across 

all counties. Our analyses reveal that multi-parameter Lorenz curve 
models outperform almost all single-parameter Lorenz curve mod-
els considered in our analysis when using the Akaike information 
criterion corrected for small sample sizes (AICc) as a measure of 
goodness of fit; in addition, we find that the two-parameter Ortega 
model is the overall winner of the Borda count (Table 2). We con-
clude that the two-parameter Ortega model provides the best overall 
fit to capture the information contained in the income distributions 
across US counties in this fine-grained dataset.

Strength of evidence. While the Borda count is a mechanism that 
aggregates results in a way that provides an overall model winner 
across all counties, we are also interested in how strong the evidence 
in favour of the two-parameter Ortega model is. That is, we aim 
to quantify how much more information we can capture by using 
a two-parameter model instead of a single-parameter model using 
AICc differences (Methods). Taken together, the Borda count and 
AICc difference analysis function as complementary building blocks 
in evaluating whether a two-parameter model performs well across 
counties while providing substantially more information than a 
one-parameter model within counties. On the basis of the finding 
that the two-parameter Ortega model won in the voting proce-
dure, we are particularly interested in using the AICc to determine 
whether the two-parameter Ortega model provides more relevant 
information about the income distribution than single-parameter 
Lorenz curve models, which function as representatives of 
single-parameter measures such as the Gini coefficient. We there-
fore compare AICc values of the Ortega Lorenz curve model with 
the best-performing single-parameter Lorenz curve model in the 
Borda count contest (that is, the lognormal Lorenz curve model). 
We subsequently expand this analysis and also compare the Ortega 
model with the higher-parameter GB2 and Wang models, which 
were the closest runners-up in our analyses.

Figure 2a depicts the frequency of Δlognormal,Ortega values across 
counties. As this figure shows, for the vast majority of cases, the 
lognormal single-parameter model (which is reflective of the 

Table 1 | theoretically derived parametric theoretical models 
considered in our empirical analyses

Originates from Lorenz curve η(u)

1. Pareto distribution 1 − (1 − u)1 − 1/α

2. Lognormal distribution Φ(Φ−1(u) − σ)

3. Gamma distribution G(G−1(u; σ); σ + 1)

4. Weibull distribution G(− log(1 − u); 1
α + 1)

5. Generalized gamma 
distribution

G
(

G−1(u; p); p + 1
a
)

6. Dagum distribution B(u1/q; q + 1
a , 1 − 1

a )

7. Singh–Maddala 
distribution

B(1 − (1 − u)1/q; 1 + 1
a , q −

1
a )

8. GB1 distribution B(B−1(u; p, q); p + 1
a , q)

9. GB2 distribution B(B−1(u; p, q); p + 1
a , q −

1
a )

10. Kakwani and Podder62 ue−β(1 − u)

11. Rasche et al.63 (1 − (1 − u)α)1/β

12. Ortega et al.26 uα(1 − (1−u)β)

13. Chotikapanich64 eku−1
ek−1

14. Sarabia et al.58 uα+γ [1 − a(1 − u)β ]
γ

15. Abdalla and Hassan65 uα(1 − (1−u)δeβu)

16. Rohde66 u ×

β−1
β−u

17. Wang et al.67 δuα [1 − (1 − u)β ] + (1 − δ)[1 − (1 − u)β1 ]
ν

Rows 1–9: Lorenz curve models from distributional origin. Rows 10–17: functional forms proposed 
to model Lorenz curves. Model 14 is recognized as a family of Lorenz curves but not proposed as 
a Lorenz curve specifically. As this family is the most general form of the specific Lorenz curve 
that Sarabia et al.58 propose, we use it as a four-parameter Lorenz curve44,68–71. η denotes the 
cumulative percentage of income, u denotes the cumulative percentage of the population, Φ() 
is the cumulative distribution function of the standard normal distribution, G() is the incomplete 
gamma function ratio and B() is the lower incomplete beta function ratio as defined in the Notation 
Preface in the Supplementary Information. Details on the parameter restrictions are given in 
Supplementary Section 1.

Table 2 | Borda count result using aiCc as information criterion

Number of parameters Model Borda score

2 Ortega 42,597

3 GB2 41,906

2 Dagum 38,791

5 Wang 38,187

2 Singh–Maddala 36,274

3 Abdalla–Hassan 35,354

4 Sarabia 32,272

2 Rasche 32,131

1 Lognormal 24,749

2 Generalized gamma 23,178

3 GB1 22,852

1 Gamma 13,926

1 Weibull 11,400

1 Pareto 9,522

1 Rhode 7,296

1 Chotikapanich 4,071

1 Kakwani–Podder 1,110

In each county, the Lorenz curve models were scored according to the Borda count procedure. The 
model with the highest Borda score wins. Models modelling Lorenz curves with one parameter 
represent single-parameter inequality measures (for example, the Gini coefficient).
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Gini coefficient) captures substantially less information than the 
two-parameter Ortega model. Put differently, we find decisive evi-
dence that the two-parameter Ortega model captures substantially 
more information on the actual distribution of income in 80% of 
all US counties, providing further evidence that a two-parameter 
Lorenz curve model outperforms single-parameter models. For an 
illustration of how well the Ortega model fits the empirical data 
relative to the single-parameter model, see Fig. 2b.

We also use the AICc differences analysis to evaluate how two 
runners-up in our prior analysis, the higher-parameter GB2 and 
Wang models, performed compared with the model winner, Ortega. 
Comparing the three-parameter GB2 model with the two-parameter 
Ortega model, we find inconclusive evidence for whether one model 
outperforms the other (that is, in 2,413 of 3,056 total US counties, 
the absolute value of the AICc difference is below 4; Supplementary 
Fig. 12). While this is no indication of the two-parameter Ortega 
model performing better, we favour the two-parameter Ortega 
model for its simplicity (that is, two parameters are easier to inter-
pret than three). In an AICc comparison of the five-parameter Wang 
model and the two-parameter Ortega model, we find that the Wang 
model outperforms the Ortega model for some counties but find 
the opposite for other counties (Supplementary Fig. 13). A closer 
look at the results reveals that the Ortega model more consistently 
ranks among the top-performing models, whereas the Wang model 
shows great performance in some counties and only mediocre per-
formance in others (that is, the Wang model wins in plurality vot-
ing (Supplementary Fig. 5) but does not maintain a leading position 
in the Borda count (Supplementary Fig. 6)). Because our stated 
aim is to find a model that performs well across all counties, the 
two-parameter Ortega model is our preferred choice (details on the 
analysis and relevant figures are given in Supplementary Section 8). 
That said, other scholars may benefit from using different success 
criteria in choosing which model to use.

Robustness analyses. To evaluate the reliability of our results, we 
tested the robustness of estimates across estimation methods and 
goodness-of-fit measures. We estimate Lorenz curves through a 
nonlinear least squares (NLS) approach (Supplementary Section 9) 
and compare the NLS results with those obtained by MLE, ruling 
out the possibility that our results are driven by our choice of estima-
tion procedure. Our analyses reveal only small relative differences 
between MLE and NLS estimates; for example, the median relative 
difference between MLE and NLS estimates for Ortega parameter 
α across US counties is 0.0234 (see Supplementary Section 10 for 
more details). Additionally, we ran a simulation study to investigate 
the ability of the AICc to detect the true data-generating model when 
only a few empirical observations are available (Supplementary 
Section 5). We find a high true-model detection rate for our sample 
size of 19–23 data points per county; that is, if Ortega were the true 
data-generating model and 19 data points were available, we would 
on average correctly detect Ortega as the true model in 98.5% of 
all cases (Supplementary Table 4). This provides additional confi-
dence in the reliability of the AICc given our specific setting. To rule 
out the possibility that our results are influenced by the choice of 
information criterion itself, we also conducted analyses with dif-
ferent information criteria. For example, we replicated our analyses 
using the Bayesian information criterion (BIC) instead of the AICc 
to check whether Borda voting results that determine the winning 
model are robust to other measures of performance and found simi-
lar results (Supplementary Section 6, in particular Supplementary 
Fig. 7). Furthermore, we conducted an analysis of BIC differences 
instead of AICc differences and found that the results in favour of 
the two-parameter Ortega model are robust across information cri-
teria (Supplementary Section 7).

In sum, our robustness checks demonstrate the reliability of our 
results, suggesting that the two-parameter Ortega model does con-
sistently well across all additional analyses in our dataset. Because 
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Fig. 2 | the strength of evidence in favour of the two-parameter Ortega model. a, The histogram plots the AICc differences (Δi,j) between the 
one-parameter lognormal model (i) and the two-parameter Ortega (j). To categorize the strength of evidence, we define the following ranges: Δi,j > 10 
implies decisive evidence that model j is superior to model i; Δi,j ∈ [4, 10] implies some evidence; Δi,j ∈ [−4, 4) implies inconclusive evidence; and 
Δi,j < −4 implies counter-evidence (that is, evidence in favour of model i over j). b, An example to illustrate the goodness of fit of one-parameter versus 
two-parameter models of Lorenz curves to empirical data. For the two-parameter model, we fitted the Ortega Lorenz curve model using the empirical data 
points and MLE, plotted next to the empirically best-fitting one-parameter model (the lognormal Lorenz curve model).
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we are proposing a data-driven approach to studying inequality, 
our finding that the Ortega parameters are a close approximation 
to the real data critically depend on the dataset used. Note that the 
methodology we propose might yield different inequality measures 
in other datasets. This has implications for future researchers: we 
encourage scholars to use and apply our methods, not the resulting 
measures we find here, to income distributions in other settings, 
including in different countries around the world.

Ortega parameters. Parametric Lorenz curve models character-
ize the shape of income distributions using their parameters. As a 
result, those parameters themselves can be used as inequality mea-
sures. Because our two-parameter Ortega model emerged as the 
best-fitting model in our previous analysis, we now turn to inves-
tigating the characteristics of these two parameters as measures of 
inequality in more depth (Methods). To provide better insight into 
the role of both Ortega parameters in capturing the income distribu-
tion, we simulate a number of Ortega-type Lorenz curves. We vary 
one Ortega parameter while keeping the other fixed and visually 
evaluate the changes in the Lorenz curves’ shapes, thereby exam-
ining how each Ortega parameter individually affects the Lorenz 
curve. Note that, as described in our Methods, we use a transforma-
tion of the second Ortega parameter β to γ, which reflects 1−β.

Contrasting the two parameters reveals that the first Ortega 
parameter, α, captures inequality with a more pronounced focus on 
concentrations at the bottom of the income distribution, while the 
second Ortega parameter, γ, reflects an emphasis towards inequal-
ity concentrated at the very top of the income distribution (Fig. 3). 
Specifically, when γ is held constant, α stretches the Lorenz curve 
on the left side of the income distribution (that is, at lower incomes; 
Fig. 3a), while variation in γ with a constant α influences the shape 
of the Lorenz curve on the far right side (that is, at the highest 
income levels; Fig. 3b). This indicates that the parameters focus on 
different spectra of the Lorenz curve. That is, while the parameters 
combined capture the degree of inequality overall, each individu-
ally reflects a focus on a different part of the income distribution. 
This interpretation is in line with the parameters being correlated 
and affected by each other’s alternating values, yet individually pro-
viding additional valuable information about the relative extent 

of bottom- or top-concentrated inequality. Interested readers may 
find the interactive R shiny tool we created useful, which displays 
changing α and γ parameters to better understand the effects of each 
parameter (available at http://www.measuringinequality.com/).

Relationships with other inequality measures. To provide another 
interpretation of the two Ortega parameters, we correlate them 
to simulated income ratios (see Supplementary Section 12 for the 
details). These analyses reveal a high partial correlation between γ 
and the 99/90 ratio (r = 0.9088) and between α and the 90/10 ratio 
(r = 0.9081). That is, we can think of the Ortega parameters as shift-
ing the line of differentiation between top and bottom inequal-
ity away from the median (that is, the 50th percentile) towards a 
higher percentile (for example, the 90th percentile). This is visu-
ally reflected in Fig. 3, which reveals a larger impact of Ortega γ on 
the very top income percentiles, whereas α moderately bends the 
Lorenz curve within the lower income percentiles.

Combining the two Ortega parameters provides the degree of 
overall inequality. Analytically, we can calculate the Gini coeffi-
cient from an Ortega Lorenz curve (using the original notation of 
the Ortega parameters α, β: Gini(α, β) = α−1

α+1 + 2B(α + 1, β + 1), 
where B() is the beta function26). This also implies that we can-
not view one Ortega parameter alone as representative of the Gini 
coefficient and the other one as providing ‘additional’ information. 
Instead, the Ortega parameters individually allow us to differenti-
ate where in the income distribution inequality is concentrated, 
and considering them jointly yields estimates of the overall level of 
inequality. Using both Ortega parameters allows us to distinguish 
between different sources of inequality, which the Gini coefficient 
cannot do because it condenses the same amount of information 
into a single value. To gain a better understanding what informa-
tion is gained from using the Ortega parameters over the Gini coef-
ficient, we have compiled Fig. 4, which depicts the values for both 
across the United States at the county level.

We conducted a number of additional analyses. First, we calcu-
lated derivatives, finding that the Ortega parameters have different 
rates of change depending on the section of the x axis (that is, the 
population share), with γ affecting the top percentile of the Lorenz 
curve most intensely (see Supplementary Section 12 for further 
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in the top income percentiles. For comparison, the empirical estimates across counties for α range from 0.12 to 1.23; for γ, they range from 0.3 to 0.93.
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Fig. 4 | Different representations of inequality across counties in the united States. a, The Gini coefficient. b, The first Ortega parameter, α (a measure of 
more bottom-concentrated inequality). c, The second Ortega parameter, γ (a measure of more top-concentrated inequality). An interactive version of this 
figure is available at www.measuringinequality.com. Sources: Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS User Community.
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details, and in particular Supplementary Fig. 15). Additionally, 
the derivatives of the percentile ratios 90/50 and 50/10 calculated 
from the Ortega model showed that the functions are heavily influ-
enced by a change of γ for the 90/50 ratio and α for the 50/10 ratio. 
However, note that percentile ratios do not fully correspond to 
the Ortega parameters, suggesting that Ortega parameters α and γ 
provide information similar to the percentile ratios plus additional 
valuable information. More specifically, note that the two Ortega 
parameters characterize the whole income distribution Lorenz 
curve, whereas percentile ratios give only point-wise information 
on how the underlying Lorenz curve behaves at certain points in 
the income distribution. As a result, redrawing the income distribu-
tion, especially when only a single percentile ratio is available, may 
still result in widely varying Lorenz curves (and therefore lead to 
concerns similar to those pertaining to single-parameter measures 
such as the Gini coefficient). An illustration of this is provided in 
Supplementary Fig. 14.

We also compared the Gini coefficients implied by the 
model parameters with those Gini coefficients calculated non- 
parametrically on the US county data (Supplementary Section 
13 and Supplementary Fig. 16). This analysis demonstrates that 
one-parameter models substantially deviate from the ideal aver-
age deviation of zero, whereas two-parameter models are a major 
improvement (for example the one-parameter Pareto model 
implied Gini coefficient has a median deviation from the empiri-
cal Gini of −0.076, whereas the two-parameter Ortega model Gini 
yields a median deviation of 0.004). Across the two-parameter mod-
els, the Ortega model is the one closest to the deviation of zero with 
a substantial number of data points. With more parameters, preci-
sion further increases, but the improvements are much smaller than 
between the one- and two-parameter models.

Policy-relevant outcomes. Finally, given that we found the 
two-parameter Ortega model to aptly reflect the real-world income 
distributions in our dataset, we now turn to investigating whether 
the parameters of this model, used as inequality measures, are able 
to disentangle prior mixed findings on correlates of inequality. In so 
doing, we follow an established literature that correlates inequality 
measures—typically the Gini coefficient—with policy-relevant out-
comes27,28. As is important to do in this established literature, we note 
the limitations of a correlational approach in these settings, such 
as the lack of causal claims and the need for theoretically derived 
predictions about the existence of any such relationships. Our goal 
is not to speak to any particular policy outcome but instead to illus-
trate how this approach can allow for more theoretically driven 
inquiry in the future. To do so, we calculate the correlations of the 
two Ortega parameters with a large number of policy-relevant vari-
ables at the county level intended to capture many different fields 
across the social sciences, and we compare them with the correla-
tions between the Gini coefficient and those same variables.

Our approach is exploratory and compares the use of two Ortega 
parameters with that of the Gini coefficient. Specifically, we investi-
gate whether the two Ortega parameters detect statistically signifi-
cant correlations that the Gini coefficient misses (that is, where the 
Gini coefficient does not have a statistically significant association). 
In other words, we might see cases where a county-level variable is 
not significantly correlated with the Gini coefficient but where there 
might be a statistically significant correlation with one (or two) of 
the Ortega parameters. In such cases, the two Ortega parameters 
may disentangle the effects of inequality associated with a certain 
spectrum of the income distribution that may be masked by the Gini 
coefficient. This may also apply to cases where we find a statistically 
significant correlation between the Gini coefficient and a county-level 
variable, and where one or both of the Ortega parameters are also 
significantly correlated. In such cases, our analyses would provide 
a clearer picture of the driver of the correlation between inequality  

and that policy-relevant outcome—that is, whether that associa-
tion stems from inequality concentrated at the top or the bottom of 
the income distribution, or both (see Supplementary Section 14 for 
the details). We emphasize that this is an exploratory analysis, and 
should not be viewed as a definitive determination that inequality is 
linked with a particular policy outcome.

To conduct this exploratory correlational study, we surveyed 
publicly available datasets, yielding 100 variables in the fields of 
health, crime, socio-economic status, social mobility and urban 
structures, which we then correlate with the inequality mea-
sures. We draw on various data sources, including the American 
Community Survey (ACS) 2011–201529, aggregated tax records, 
Social Security Administration data30 and a combined census, tax 
records and IRS Statistics of Income dataset31. Using these datasets, 
we calculate Pearson correlations between the inequality measures 
and county-level policy-relevant variables. Note that because we 
have 100 variables with which to correlate the inequality measures, 
we use a Bonferroni correction throughout the analysis, adjusting 
the α = 0.05 significance level to α = 0.0005 to account for multiple 
hypothesis testing32. Note that these are two-tailed tests. Since the 
Ortega model is a two-parameter model and should thus be inter-
preted jointly, we control for one Ortega parameter while correlat-
ing the other Ortega parameter with the county-level characteristics, 
and vice versa. For each Ortega parameter, we therefore calculated 
partial Pearson correlations, whereas we calculated simple Pearson 
correlations for the Gini coefficient.

Our analysis reveals that in 33 of 100 cases, at least one of the 
Ortega parameters was able to detect a statistically significant cor-
relation (after applying the Bonferroni correction), but the Gini 
coefficient failed to do so. Figure 5 illustrates this subsample of 
cases, which include, among other things, cases of obesity, com-
muting time and the fraction of people with a bachelor’s degree. 
For a further 59 cases, the Gini coefficient had a statistically sig-
nificant correlation, as did at least one of the Ortega parameters, 
shedding light on whether concentrations of income at the bot-
tom or top of the income distribution are driving this correlation 
(see Supplementary Table 11 for a general overview of our analysis 
results and Supplementary Section 14 for more details).

Examples of applications to policy. We highlight three examples 
that result from this analysis to illustrate how this approach can 
provide insights. Consider the association between economic 
inequality and obesity: prior research has found that the relation-
ship between economic inequality and obesity is inconsistent, at 
times finding a positive relationship4 and at times a negative rela-
tionship5. Our dataset provides detailed information about the 
percentage of people within any given county that have a body 
mass index classified as obese (body mass index 30+). Note that 
the Gini coefficient has no statistically significant correlation 
with obesity in our data, either aggregated across income levels 
(Bonferroni-corrected 99.95% confidence interval, (−0.088, 0.055)) 
or separated by income quartile (Fig. 5). Both Ortega parameters, 
however, show statistically significant partial correlations in oppo-
site directions (Bonferroni-corrected 99.95% confidence interval 
for α, (0.170, 0.306); for γ, (−0.298, −0.161)). Recall that a higher 
α reflects a more pronounced bottom-concentrated inequal-
ity and a higher γ denotes higher inequalities at the very top of 
the income distribution. Our analysis reveals opposite effects 
for bottom- and top-concentrated inequality, such that greater 
bottom-concentrated inequality is associated with more obesity and 
higher top-concentrated inequality is associated with less obesity. 
The Gini coefficient, in contrast, fails to differentiate those diverg-
ing effects and finds a null association. Using the two Ortega param-
eters, we can differentiate between the opposing effects driving the 
relationship between inequality and obesity, with both theoretical 
and empirical implications for researchers and policymakers alike.
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The correlation between economic inequality and educational 
outcomes provides a second example of the utility of our approach. 
Consider that a prior meta-analysis33 found a wide range of results 
for the relationship between educational outcomes and economic 
inequality, both positive and negative. In our analysis, we find that 
the relationship between the Gini coefficient and an educational out-
come such as the share of the population holding a bachelor’s degree 
is not statistically significant but that both Ortega parameters show 
statistically significant associations in opposite directions (Fig. 5). 
More specifically, we find that higher bottom-concentrated inequality  

is associated with a lower share of bachelor’s degrees in the popula-
tion and that higher top-concentrated inequality is associated with a 
greater share of bachelor’s degrees. Viewed through this lens, a focus 
on the Gini coefficient alone obscures that educational outcomes are 
related to inequality—but in opposing ways for inequality concentra-
tions at the bottom and top of the income distribution. Both examples 
highlight that a single inequality measure such as the Gini coefficient 
may mask effects that are revealed by the two Ortega parameters.

Finally, the two Ortega parameters may also clarify a relation-
ship between inequality and its correlates even in cases where the 
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Fig. 5 | a two-parameter Ortega approach reveals significant correlations between inequality and policy outcomes across N = 3,049 uS counties 
that the Gini coefficient misses in our dataset. Point estimates of the Pearson correlations (Gini coefficient) and partial Pearson correlations (Ortega 
parameters) with policy outcomes are visualized with the bounds of the 0.9995 confidence interval, using a Bonferroni correction. The figure shows 
the subsample of covariates (33 of 100) for which the Pearson correlations with the Gini coefficient were not significant but that exhibited at least one 
statistically significant partial correlation with the Ortega parameters. M, male; F, female; Q, income quartile; frac., fraction; raceadj., race adjusted.
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relationship between the Gini coefficient and correlates is statisti-
cally significant. For example, consider the association between 
economic inequality and the fraction of the population receiv-
ing social security income. In this case, the Gini coefficient and 
one of two Ortega parameters, α, are significantly and positively 
correlated with the fraction of social security income recipients 
(Supplementary Fig. 21). In other words, a higher level of Ortega 
parameter α, suggesting greater bottom-concentrated inequality, 
is associated with a higher percentage of social security income 
recipients. Although the Gini coefficient was positively correlated 
with the percentage of social security recipients as well, by using 
the Ortega parameters, we can see that this relationship is driven 
primarily by bottom-concentrated inequality.

Discussion
Our jointly theoretically derived and data-driven analysis shows 
that single-parameter measures of inequality such as the widely used 
Gini coefficient may miss crucial information contained in income 
distributions. The two-parameter Ortega model, which we found 
shows a superior fit in our dataset of US county-level income distri-
butions, reveals where inequality is concentrated along the income 
distribution. This information could enable researchers to gener-
ate and evaluate substantially more refined theories that relate eco-
nomic inequality to social, political or psychological phenomena. 
That is, future theorizing may need to move beyond considering 
total levels of inequality to instead account for different inequality 
concentrations across the income distribution. It is likely that indi-
viduals psychologically experience inequality concentrated among 
low-income individuals (that is, a relatively larger gap between 
lower-income individuals and the rest of the population) very differ-
ently from inequality concentrated among high-income individuals 
(that is, a relatively larger gap between higher-income individuals 
and the rest of the population). For example, prior research has 
often found that individuals misperceive levels of inequality34,35; 
the approach detailed here may shed light on whether people per-
ceive certain kinds of inequality more accurately than others, such 
as whether they are more accurate in estimating inequality concen-
trated among lower- than among higher-income individuals36,37. It is 
also likely that different concentrations of inequality are associated 
with distinct structural factors that may either impede or support 
the progress of different populations. More broadly, our exploratory 
correlational study provides tentative initial evidence for the variety 
of ways in which correlates of inequality may be empirically disen-
tangled using multi-parameter measures of inequality, highlighting 
the need for future theory to develop a better understanding of why 
inequality concentrations that are more pronounced in a certain 
region along the income distribution may produce disparate effects. 
To aid in these endeavours, we are making our datasets and meth-
odology—including Ortega parameter estimates for 3,056 US coun-
ties and 50 US states—publicly available for other researchers to use 
at www.measuringinequality.com.

Across academic, policy and public spheres, inequality has 
received growing attention in recent years. For example, a recent 
survey38 suggested that a majority of Americans think there is too 
much economic inequality. At the same time, public support for 
measures to redress inequality depends on a variety of factors39. Our 
results highlight that one way to understand the diverging beliefs 
about inequality and preferences for redistribution is to focus on 
what kind of inequality respondents were dissatisfied with the most. 
This becomes clearer when discussing potential measures taken to 
redress inequality. For example, reducing top-concentrated eco-
nomic inequality could be achieved by raising top income taxes, 
and reducing bottom-concentrated inequality may involve raising 
the minimum wage. Our approach and findings suggest that mov-
ing beyond the overall concentration of inequality as reflected in the 
Gini coefficient may be fruitful in pinpointing both how different 

kinds of inequality affect outcomes and how to make meaningful 
change to redress inequality.

One limitation of our research is that our results are restricted to 
a specific dataset of counties in the United States, and our insights 
may not generalize to other datasets including in countries. To 
more broadly generalize beyond the current research, similar 
high-quality data including from other countries needs to be made 
publicly available by statistics bureaus. Most datasets that are avail-
able to researchers do not contain sufficient information to conduct 
the kinds of analyses we have demonstrated here. We hope that our 
work encourages statistics bureaus to publish more detailed inequal-
ity data and that they take note of the kind of information that 
should be included in publicly available data to ensure maximum 
usability and information content. This may include data on addi-
tional inequality measures, including the two Ortega parameters, as 
well as additional and fine-grained information on income distribu-
tions that would allow subsequent research to build on and extend 
the current research. In additional exploratory simulations reported 
in the Supplementary Information—which we suggest should be 
interpreted with caution—we outline three criteria that datasets 
on income distributions used for the method we detail here should 
meet: (1) data granularity, with at least 15 data points per Lorenz 
curve (Supplementary Section 5); (2) at least two data points of top 
income shares above the 90th percentile (Supplementary Section 
15); and (3) at least 60 Lorenz curves (and ideally, many more; 
Supplementary Section 15). Currently, publicly available informa-
tion on income distributions is far more limited and commonly falls 
short of satisfying all three criteria. For example, the World Bank 
database40 only has data available on income quintiles as well as the 
top and bottom 10% (that is, a total of seven data points).

To fully take advantage of our research, we highlight that it is 
important for both additional inequality measures and for more 
fine-grained inequality distribution data to be made publicly avail-
able: while the two-parameter Ortega model was the best-fitting 
model in our dataset (which uniquely meets these three criteria), 
it is possible that in other datasets (including in other countries), a 
different model might outperform the Ortega model. Alternating 
model winners that provide the best fit to the data at hand might 
depend on the amount of available data (that is, how many data 
points are available might affect whether higher- or lower-parameter 
models best represent the data) and the actual shapes of different 
income distributions at different levels of analysis and in different 
areas of the world. Our research provides both a toolbox and an 
impetus for future work to move beyond single-parameter mea-
sures of inequality, which can be readily adapted as more granular 
inequality data become available. To better understand inequality 
and its correlates may require us to move beyond the widely avail-
able Gini coefficient.

Methods
Modelling the distribution of income. As is the case for many constructs in 
the social sciences, there is no self-defining concept of inequality41, which leads 
to definitions of inequality being highly dependent on normative judgements42. 
To conduct research that does not impose normative judgements, we follow the 
etymological definition of income inequality—that is, the non-equal distribution 
of income. Through this lens, the measurement of inequality necessitates capturing 
the shape and form of income distributions. We use a parametric model that allows 
us to attain a “multidimensional view of the level of inequality which you can’t get 
from a summary statistic directly” (ref. 43, p. 196). Through a parametric model, we 
can subsequently redraw the income distribution when given only its parameters 
and compare it with the actual income distribution.

We also considered using non-parametric approaches—that is, methods that 
do not require parametric assumptions at any step—in our analyses. However, 
when evaluating non-parametric inequality measures, such as generalized 
entropy measures, we face one major disadvantage that renders them ill-fitting 
given the goals of our analysis: non-parametric summary statistics do not allow a 
comparison of their output with a ‘real’ income distribution (that is, the empirical 
data), which would enable us to ascertain the extent to which the measure is a good 
or bad approximation of actual data. And although there are some non-parametric 
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procedures available to model the distribution of income, a recent study finds that 
these methods “fail to represent income distributions accurately” (ref. 44, p. 964). 
We therefore rely only on parametric approaches in our analysis.

Lorenz curves. The well-established Lorenz curve framework is helpful for 
modelling income distributions parametrically for the purpose of measuring 
inequality. The Lorenz curve is a graphical representation that visualizes the 
distribution of economic quantities across the population on a relative scale 
instead of using absolute terms. That is, the Lorenz curve displays which part of 
the population contributes what share to the total income of a whole population. 
To calculate the relative quantities for the distribution of income, the population 
is ordered from lowest- to highest-income individuals (or income groups), and 
then the share of total income held by the respective proportion of the population 
is determined. Subsequently, the proportions of total income are cumulated (y 
axis) and plotted against the cumulative share of the low- to high-income ordered 
population (x axis). The resulting curve shows where along the income distribution 
what share of total income is held.

In prior literature, Lorenz curve models originated from two distinct streams of 
research. One approach begins with a suggested statistical distribution of income 
and derives the respective Lorenz curve. For a random variable x representing 
the income of a member of the population with cumulative distribution F(x), we 
can use the following formula given by ref. 45: let F−1(t) = inf

x
{x : F(x) ≥ t} be 

the inverse of F(x) (that is, the quantile function), and let μ = ∫xdF(x) be the finite 
mean; then, the Lorenz curve is defined as L(u) = μ−1 ∫ u

0 F−1(t)dt, 0 ≤ μ ≤ 1. 
A second stream of research proposes functional forms to satisfy relevant 
properties that qualify them as Lorenz curves. These properties are inspired by 
the real-world implications that a Lorenz curve model should have—for example, 
being bounded between zero and one, such that 0% of the population has 0% of 
the total income and 100% of the population possesses the total income. For a 
complete list of properties that need to be satisfied to qualify for a Lorenz curve, 
see refs. 18,46–48.

Our study bridges the two approaches, and a resulting comprehensive literature 
review of possible candidate models yields a total of 17 Lorenz curve models, 
which we subsequently test (Table 1; for more information, see Supplementary 
Section 1). These vary in the number of parameters they use, from one to five. Note 
that the single-parameter Lorenz curve models such as the lognormal Lorenz curve 
model can be directly transformed into the Gini coefficient49; however, we cannot 
include the Gini coefficient as a model itself in Table 1 because it is a statistic—that 
is, a function of the data but not a statistical model that aims at describing the 
underlying data-generating process. For multiple-parameter Lorenz curve models, 
the Gini coefficient can also be calculated through a combination of parameters26. 
In reviewing these competing models, we ask: how many and which parameters are 
necessary for Lorenz curve models to capture relevant information contained in 
income distributions?

To answer this question, we fitted the Lorenz curve models presented in Table 
1 to each of the N = 3,056 empirical Lorenz curves we obtained by combining two 
sets of US income data. Note that our approach is more extensive than comparable 
prior studies such as Chotikapanich and Griffiths50, who compare parametric 
model estimates across only five Lorenz curves, or Paul and Shankar51, who 
compare the fit of single-parameter models on only ten Lorenz curves. In addition, 
through the systematic application of goodness-of-fit analyses that we introduce 
for our specific question at hand, we determine the theoretical Lorenz curve model 
that most adequately describes the empirical Lorenz curves. The model winner 
reflects how many and what kind of parameters are best suited to capture the 
income distribution as depicted by Lorenz curves in the current data.

US county-level datasets. To arrive at a large dataset of income distributions, 
we combine two distinct data sources. The first is the ACS 2011–201529, 
collected by the US Census Bureau from a representative sample of the US 
population (see Supplementary Section 2 for details about the dataset and 
data-cleaning procedures). The ACS data are particularly detailed for lower- and 
medium-income groups. The variables of interest are the ACS yearly estimates 
over the five-year period for the share of income earned by population quintile 
and the top 5% of income earners, the income aggregate per county, and the 
count of people that fall into certain ranges of income (income buckets). Within 
income buckets, we assumed a symmetrical distribution of income, such that we 
can calculate the share of income held by the fraction of the population within the 
respective bucket and draw a Lorenz curve (see Supplementary Section 3 for more 
details on this procedure). As with most grouped-income data, the top income 
bucket is an open interval. In our case, the ACS provides the number of households 
that have an annual income >US$200,000, but no information is provided on how 
people are distributed within that bucket. This makes accurate estimates of top 
income shares inaccessible; however, this information is particularly important for 
our purposes of accurately depicting real-world income distributions.

To overcome this shortcoming at top income levels, we enrich the ACS 
data with more precise estimates for top income groups through data from the 
Economic Policy Institute52 that contains income shares for the bottom 90%, 
90–95%, 95–99% and top 1% of income earners in the United States for the year 
2013. The data for this table were constructed using tax data from the Internal 

Revenue Service’s Statistics of Income Tax Stats and therefore provide more 
reliable information on high-income shares. The Economic Policy Institute dataset 
consists of data on 3,064 US counties for which the ACS also provides data. We 
excluded the District of Columbia because of its special nature and seven counties 
because of data inconsistencies. Our final sample of empirical real-world Lorenz 
curves at the US county level covers 3,056 counties. Of a total of 3,143 US counties 
and county equivalences, our dataset therefore achieves a coverage of 97% of all 
counties in the United States.

Estimation and goodness-of-fit analysis. For the estimation and goodness-of-fit 
analysis, we combine elements that are well known from applied statistics and 
that are particularly suitable given the current context. Following Chotikapanich 
and Griffith50, who introduced MLE for Lorenz curve estimation, we estimate the 
Lorenz curve parameters by maximizing a log-likelihood function that originates 
from a Dirichlet distribution with newly defined parameters that incorporate the 
Lorenz curve parameters (the details can be found in Supplementary Section 4). 
The MLE framework allows us to use the AIC, which is defined as

AIC = −2 × ℓ(θ̂) + 2p

where p is the number of parameters of the model and ℓ(θ̂) is the value of the 
log-likelihood function at the maximum likelihood estimate of the parameter 
vector θ. While we have a large number of counties for which the models are 
estimated independently, the number of data points available to construct the 
Lorenz curve for a certain county ranges from 19 to 23, which makes it reasonable 
to adjust for small sample sizes in our estimation. Drawing on refs. 53,54, the 
bias-corrected version of the AIC for small sample sizes can be written as

AICc = AIC +
2p(p + 1)
n − p + 1

We chose the AIC because it is well defined within the MLE framework and 
offers a useful evaluation criterion that balances complexity and model fit, whereby 
high-complexity models incur a penalty55. That is, the AIC helps us distinguish 
whether an additional parameter (that is, a more complicated Lorenz curve model) 
captures further relevant information, while ensuring that models that do well in 
approximating the empirical Lorenz curves are not unnecessarily complex. One 
can think of the AIC as a way to improve the bias–variance trade-off between 
models—that is, a high-parameter model might overfit the data (high variance 
across counties), while a low-parameter model might incorporate a large bias 
(see Supplementary Section 5 for further discussion). At the same time, there are 
various ways to penalize for the use of many parameters; we therefore also use the 
BIC, which uses a different penalty term than the AIC, to evaluate the robustness 
of our results (Supplementary Sections 6 and 7).

We next determine maximum likelihood parameter estimates and AICc 
values for each of the 17 Lorenz curve models considered in each of the N = 3,056 
counties. The lower the AICc, the better, which allows us to rank the models: for 
each county, the Lorenz curve model with the lowest AICc is assigned to rank 1, 
the Lorenz curve model with the second-lowest AICc value is assigned to rank 2 
and so on. We subsequently aggregate the ranks across the N = 3,056 counties and 
use a common voting procedure—predominantly used to aggregate preferences of 
individuals on a group level—to help determine AICc model preferences across all 
counties. Specifically, we use the Borda count (see ref. 56 for more details), which 
scores choices through the summation of points assigned according to their ranks. 
That is, if there are n options to choose from, the option ranking first receives n 
points, the option ranking second receives n − 1 points, …, and the least favoured 
option receives 0 points. Those points are then summed across observations (in 
our case, across counties), and the option that receives the most points wins the 
Borda count. (For alternative voting procedures and a discussion of why the Borda 
count voting procedure is our preferred choice, see the additional analyses in 
Supplementary Section 6.)

AICc differences. We analyse AICc differences that allow us to evaluate the extent 
to which the single-parameter model may miss information contained in income 
distributions compared with the two-parameter model. While the absolute AICc 
values themselves are not meaningful, because they contain arbitrary constants 
and are affected by sample size, differences between AICc values are free of such 
constants, as they affect all AICc values equally57. To calculate AICc differences, we 
generalize and extend prior work57 by defining AICc differences as follows:

∆i,j = AICc,i − AICc,j

where AICc,i is the AICc value of the model i and AICc,j the AICc value of model 
j. Hence, Δi,j is the information loss experienced when fitting model i rather than 
model j. Information loss will thus act as a criterion for the strength of evidence 
for or against a model: if Δi,j is small, we do not lose much information when 
fitting model i instead of j to our data. In this case, there would be support (or 
evidence) for model j in capturing as much information as model i. The larger Δi,j 
gets, the less plausible it is for model i to be as good an approximation of the data 
as model j; that is, the larger Δi,j, the more certain we are that model j provides a 
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substantially better model for our data. Using a conservative estimate57, we can 
define the following ranges: Δi,j > 10 implies decisive evidence that model j is 
superior to model i in capturing relevant information from the empirical income 
distribution; Δi,j ∈ [4, 10] implies some evidence; Δi,j ∈ [−4, 4) implies inconclusive 
evidence; and Δi,j < −4 implies counter-evidence (that is, evidence in favour of 
model i over j).

Ortega parameters. We use the parameters of the Ortega model directly as 
measures of inequality. The parameters of a Lorenz curve model characterize the 
shape of the resulting Lorenz curve. In other words, we argue that key information 
from the income distribution can be condensed into parameters that act as 
measures of inequality. For the Ortega model, there are two parameters available 
for fitting to the data, and we aim to explore what kind of information each Ortega 
parameter captures. While Ortega et al.26 did not detail the theoretical origins of 
the proposed functional form, others acknowledge that the Ortega Lorenz curve 
model coincides with a model inside the hierarchical family of Pareto Lorenz 
curves58. In particular, the Lorenz curve associated with the Pareto distribution 
takes the form

L(u) = 1 − (1 − u)1−
1
a ,where a > 1

Applying a previously proposed generalization58 such that L2(u) = uα × L1(u) and 
defining β = 1 −

1
a results in the Ortega Lorenz curve of the form:

L(u) = uα
× (1 − (1 − u)β

),where 0 ≤ α; 0 < β ≤ 1

There is therefore a close connection between the Pareto parameter a and the 
second Ortega parameter β. In fact, when the first Ortega parameter equals zero, 
an analytical solution for the first Ortega parameter and the Pareto parameter 
relationship can be found: β = 1 −

1
a (for more technical details on the derivation 

of the relationship between the Pareto distribution and the second Ortega 
parameter β, see Supplementary Section 11).

Note that the Pareto parameter a has previously been used as a measure of 
inequality, more widely known as the Pareto index. Indeed, prior research has 
found that the Pareto index is particularly useful for modelling the upper tail 
of the income distribution59,60, denoting the frequency with which top incomes 
occur. More formally, this is described as the breadth of the Pareto distribution, 
corresponding to the shape parameter a within the Pareto distribution61. This 
means that the smaller the a, the thicker the right tail of the Pareto distribution59. 
One might therefore suspect that the lower the second Ortega parameter β, the 
more inequality is concentrated at the top of the income distribution—that is, that 
there are more occurrences of top incomes. To ease interpretation, we transform 
the Ortega parameter β as follows:

γ := 1 − β

The newly defined parameter γ now implies the more intuitive interpretation that 
a higher γ indicates a higher concentration of inequality at the top of the income 
distribution. Note that γ is bounded by 0 ≤ γ < 1. In contrast, for the first Ortega 
parameter, α, prior literature has not suggested an interpretation. We therefore turn 
to simulations to study α in more detail. These simulations reveal that an increase 
in α stretches the left side of the Lorenz curve towards the x axis (that is, at lower 
incomes), suggesting that α captures inequality that is more pronounced among the 
bottom and middle percentiles of the distribution (see Supplementary Section 12 
for the details).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data to reproduce the findings discussed in this paper are available at  
http://www.measuringinequality.com/.
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Notation Preface9

• Gamma function: Γ(ν) =
∫∞

0 exp−t tν−1dt10

• Lower incomplete gamma function ratio: G(x, ν) =
∫ x

0 tν−1 exp(−t)dt/Γ(ν)11

• Lower incomplete beta function ratio: B(x; a, b) =
∫ x

0
ta−1(1−t)b−1dt∫ 1

0
ta−1(1−t)b−1dt

12

1. Functional forms of Lorenz curve models13

Properties. To ensure that the proposed functional form can serve as a Lorenz curve model, certain properties of Lorenz curves14

should be satisfied. As described in (1–3), general properties of the Lorenz curve L with respect to the cumulative percentages15

of the population p are the following:16

1. L(u) is monotone increasing17

2. L(u) ≤ p18

3. L(u) is convex19

4. L(0) = 0 and L(1) = 120

More formally, the following theorem (cited by (4, 5) but attributed to Pakes 1981) determines what functions qualify as21

Lorenz curves:22

Theorem 1 (Lorenz curve)23

A function L(u), continuous on [0, 1] and with second derivative L′′(u) is a Lorenz curve if and only if L(0) = 0, L(1) =24

1, L′(0+) ≥ 0, L′′(u) ≥ 025

Supplementary Table 1. 1.-9. Lorenz curve models from distributional origin. 10.-17. Functional forms proposed to model Lorenz curves.
Model 14 is recognized as a family of Lorenz curves but not proposed as a Lorenz curve specifically. As this family is the most general
form of the specific Lorenz curve that Sarabia proposes, we use it as a four-parameter Lorenz curve (see (4, 6–9)). η denotes the cumulative
percentage of income, u denotes the cumulative percentage of the population. Φ() is the cumulative distribution fucntion of the standard
normal distribution, G() is the incomplete gamma function ratio, B() is the lower incomplete beta function ratios as defined in SI Section 1.

# Parameter
Originates from Lorenz curve η(u) Par. restrictions
1. Pareto distribution 1− (1− u)1−1/α 1 α > 1
2. Lognormal distribution Φ(Φ−1(u)− σ) 1 σ > 0
3. Gamma distribution G(G−1(u;σ);σ + 1) 1 α, σ > 0
4. Weibull distribution G(− log(1− u); 1

α
+ 1) 1 α > 0

5. Gen. Gamma distr. G
(
G−1(u; p); p+ 1

a

)
2 a, p > 0

6. Dagum distribution B(u1/q; q + 1
a
, 1− 1

a
) 2 q > 0; a > 1

7. Singh-Maddala distr. B(1− (1− u)1/q; 1 + 1
a
, q − 1

a
) 2 q, a > 0, q > 1

a

8. GB1 distribution B(B−1(u; p, q); p+ 1
a
, q) 3 p, q, a > 0

9. GB2 distribution B
(
B−1(u; p, q); p+ 1

a
, q − 1

a

)
3 p, q, a > 0; q > 1

a

10. Kakwani/Podder [1973] (10) ue−β(1−u) 1 β > 0
11. Rasche et al. [1980] (11) (1− (1− u)α)1/β 2 0 < (α, β) ≤ 1
12. Ortega et al. [1991] (12) uα(1− (1− u)β) 2 α ≥ 0; 0 < β ≤ 1
13. Chotikapanich [1993] (13) eku−1

ek−1 1 k > 0
14. Sarabia et al. [1999] (14)* uα+γ [1− a(1− u)β ]γ 4 0 ≤ a ≤ 1; 0 < β ≤ 1;

0 ≤ α; γ ≥ 1
15. Abdalla/Hassan [2004] (15) uα(1− (1− u)δeβu) 3 α ≥ 0; 0 ≤ β ≤ δ ≤ 1
16. Rhode [2009] (16) u · β−1

β−u 1 β > 1
17. Wang et al. [2011] (17) δuα[1− (1− u)β ] 5 α ≥ 0; ν ≥ 0;α+ ν ≥ 1;

+(1− δ)[1− (1− u)β1 ]ν 0 < (δ, β, β1) ≤ 1
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2. Detailed Description of Data Cleaning26

General Procedure to Match the Datasets. Data from both sources (American Community Survey (ACS) 2011-2015 (18),27

Economic Policy Institute (EPI) (19)) were collected at the US county level, which allows us to calculate the Lorenz curve28

representation of the income distribution using the following procedure: recall that the Lorenz curve is depicted through the29

cumulative share of population on the x-axis and cumulative share of income on the y-axis. We therefore construct a dataset30

that contains the share of population (from low-income to high-income) who own a certain percentage of total income, such31

that we can draw a Lorenz curve using the cumulative sum of these data points.32

While the EPI report already presented the high-income earner data in such a way, further processing had to be undertaken33

for the ACS data: the data were given as headcounts per income bucket, which required transformation to income shares for34

the Lorenz curve representation. For this transformation, we assumed that people within income buckets were distributed35

symmetrically around the mean of the respective bucket. For example, a uniform distribution of people within an income36

bucket seems plausible in that people’s income is likely to be equidistantly spread between the narrow boundaries of 45 00037

USD and 49 999 USD per year. We could then calculate the volume of income held by the people belonging to that bucket by38

multiplying the number of people in the respective income bucket with the mean value of the bucket range, and then dividing39

this number by the aggregate income in that county, giving us the share of total income. Based on this transformation, a Lorenz40

curve could be constructed for each US county. To verify that our approximated Lorenz curve data are in line with the true41

income share percentiles of that ACS dataset (the 20th, 40th, 60th, 80th and 95th income share percentiles are provided), we42

evaluated deviations between our approximated Lorenz curve and true income share data from ACS. We found good agreement43

between the approximated Lorenz curves with the ACS income shares, which we detail in Section 3.44

Matching the ACS and EPI datasets revealed that, on average, the EPI data implied a higher level of inequality than the45

ACS data. This may arise in part because the EPI data are based on actual tax records at the taxpayer level, whereas the46

ACS data are from a self-reported survey at the household level, the latter of which is already an aggregate that typically47

underestimates the inequality suggested by the according Lorenz curve (20). For both ACS and EPI data, the exact 95th48

percentile was available, which enabled us to perform an exact scaling, i.e., adjusting the ACS household-level data to the EPI49

taxpayer-level data, using this data point as a link between datasets, see section 3 detailing this procedure. We adjust to the50

taxpayer level because it reflects the true level of income inequality in that individuals earn income, not households as a unit51

itself. We further believe that the EPI data are closer to reality, as tax reports are more difficult to manipulate and do not rely52

on self-reports that might be inaccurate, falsely remembered, or strategically misreported.53

Merging Source Tables. This subsection =describes the code data_cleaning_merge_b6_nhigs.R which was used to merge the54

raw data tables provided by ACS and EPI.55

We merge Tables B6 and B4∗ from https://www.epi.org/publication/income-inequality-in-the-us/#epi-toc-20 and Tables NHGIS56

A and NHGIS B from https://data2.nhgis.org/main that are from the American Community Survey 2011-2015. Source Table57

NHGIS A is taken from the dataset with NHGIS code 2011_2015_ACSa, and the source codes of the variables are B19001,58

B19013, B19025. Source Table NHGIS B is taken from the dataset with NHGIS code 2011_2015_ACSb, and the source codes59

of the variables are B19080, B19081, B19082, B19083. As additional information, a file with abbreviations and full names of60

US states (e.g. AK = Alaska) is taken from https://developers.google.com/public-data/docs/canonical/states_csv.61

The procedure to merge the source tables is as follows:62

• Load data and exclude Puerto Rico and the District of Columbia63

• Merge ACS data NHGIS A and NHGIS B by county name such that all data from the survey are in a single dataset64

• Adjust county names to prepare for the match: let the B6 county names (format: “San Francisco, CA”) look like NHGIS65

county names (format: “San Francisco County, California”). To do so, the B6 county data is split at “,” to separate the66

county name and state name. With the additional file on state abbreviations and names, the county state abbreviations67

are transformed into their actual name (e.g. from CA to California). Not only does the state name abbreviation differ in68

the B6 from the NHGIS format; it also says “San Francisco County, California”. Therefore, to create a new B6 column69

that looks like the NHGIS county name, the county name (San Francisco), the word “County”, “,”, and the full state70

name “California” are pasted into a single column such that we end up with a column in B6 of the county name format71

“San Francisco County, California” to match with NHGIS72

- For the special cases Census Areas or Cities: don’t paste “County” after “Census Area” or “City”73

- For the special case Alaska: Alaska is not divided into counties but into cities, boroughs, or census areas. NHGIS74

names them as City/Borough/Census Areas, but B6 does not, so we omit everything after the first word (which is a75

unique determinant of the actual area) in both datasets to derive a matching name for the corresponding area in Alaska76

- For the special case Louisiana: Louisiana is not divided into counties but into Parishes, so we paste “Parish”77

instead of “County” after county names in Louisiana78

• Transform encoding of NHGIS data from ‘ISO-8859-1’ to = ‘UTF-8’79

∗Note that B4 is relevant not for the present study but for other (future) studies that intend using this dataset.
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• Use a fuzzy string matching algorithm to merge B4/B6 and NHGIS data by county name: Fuzzy string matching has to80

be double checked by visual inspection of the county names to ensure that only correct merges have taken place. Iterative81

procedure to minimize the amount of counties that have to be inspected and matched by hand: From all the imperfect82

matches (distance > 0), which exhibit a very similar pattern, e.g. “St.” instead of “St”, transform “St.” to “St” such that83

all of these cases are now perfect matches (distance = 0). Fuzzy match again and repeat procedure. When most of the84

common structures like “St.” -> “St” are cured, we can inspect the resulting imperfect matches for counties that we need85

to match by hand. For some counties, different names exist, e.g. Shannon County, South Dakota, is another name for86

Oglala Lakota County, South Dakota87

• Write a single .csv file for the merged tables88

3. Calculation of the Lorenz Curves89

This subsection describes the code create_lorenz_curves.R to calculate Lorenz curve values for each county. The goal is90

to calculate the share of income held by shares of the population (from low-income to high-income). A quick recap of the91

information that the ACS and EPI source tables give us:92

• Table B6: Income share held by 90th,95th and 99th percentile of the population → no further transformation needed93

• NHGIS B: Income share held by 20th, 40th, 60th, 80th and 95th percentile of the population → no further transformation94

needed95

• NHGIS A: Aggregated income per county, people per county, count of people that fall into a certain income bucket, e.g.,96

have an income between 45, 000 USD and 49, 999 USD a year (see codebook in zip file for details) → need to transform97

this information, procedure:98

- Assume that people are symmetrically distributed around the mean value of the income bucket range within each99

closed income bucket, i.e., we do not use the top income bucket > 200, 000 USD.100

- Use mean value of the income bucket range multiplied by the number of people that fall into that bucket as101

estimate of the income held by people belonging to the corresponding income bucket.102

- Divide this number by the income aggregate for the respective county, such that we end up with the share of total103

income held by the income bucket104

- Divide the number of people belonging to that income bucket by the total number of people in that county to get105

the share of people belonging to that income bucket106

• Check for consistency in the ACS dataset: Inspect whether the estimated income shares per bucket are coherent with the107

information on the (true) income shares held by the 20th, 40th, 60th, 80th, and 95th percentile of the population → found108

to be consistent; see related Supplementary Figure 1.109

• Merge Lorenz curve data from ACS and EPI: Table B6 systematically suggests a higher level of inequality than the ACS110

data. This is a well-known phenomenon (20), as the ACS is at the household level (already an aggregate, e.g., two income111

earners living together in a household) whereas the B6 data are at the taxpayer level). We favor B6 data to depict a112

more realistic picture of the true inequality and hence decided to scale the ACS data to match the B6 data at the 95th113

percentile:114

- We have exact information on the 95th percentile, so we can use the 95th percentile as the anchor point for scaling115

to account for the difference in the data induced by the fact that B6 is at the taxpayer level and NHGIS at the household116

level. This means that we multiply the NHGIS percentile data by the 95th percentile of the B6 data and then divide it by117

the 95th percentile of the NHGIS data. To ensure convexity, we use solely ACS data below the 95th percentile and solely118

EPI data above the 95th percentile.119

- Check for data consistency prior and post scaling: Visually, most of the scaled data are close to the non-scaled120

data. However, as an example of an extreme case, which also illustrates that Table B6 delivers valuable information, we121

can look at Teton County, WY, further described in 3.122

Systematic Evaluation of Constructed Lorenz Curves. We have already performed a brief cross-check for data consistency of123

the ACS dataset; i.e., we checked whether our approximation of income shares using the income buckets is close to the few true124

income share percentiles provided by the ACS. Now, we check the consistency of the ACS data more systematically.125

We estimated the share of total income held by each income bucket (for all closed income buckets; i.e., we omit the top income126

bucket > 200, 000 USD) under the assumption of symmetrically distributed incomes around the mean income within each127

income bucket. As we have true income share percentiles for some percentiles of the population, namely, the 20th, 40th, 60th, 80th,128

and 95th population percentiles, we can evaluate our estimated income shares by adding the true percentiles to our estimated129

Lorenz curves and for their fit. Remember that empirical Lorenz curves are defined by data points that are then linearly130

interpolated. Hence, we also linearly interpolate between our estimated income percentiles and calculate the estimated income131

percentile at the 20th, 40th, 60th, and 80th population percentile for which the ACS provides exact data. This allows us to132
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calculate the residual sum of squares (RSS) between the estimated income percentile at the 20th, 40th, 60th and 80th population133

percentiles and the true 20th, 40th, 60th and 80th percentiles.†134

While Supplementary Figure 1 already suggested that the estimated income percentiles from the income buckets seem to fit135

very well to the true income percentiles, we aim to quantify the fit more formally and calculate the RSS as described above. In136

Supplementary Figure 2, we can see one clear outlier, and potentially three more. Hence, we take a closer look at the counties137

with the top four RSS scores, which turn out to be [1] Falls Church city, Virginia, [2] Monroe County, Alabama, [3] Allendale138

County, South Carolina, and [4] Holmes County, Mississippi.139

The Lorenz curve plots of these counties, depicted in Supplementary Figure 3, reveal the following: for the county with the140

highest RSS score, Falls Church, we can clearly see that this high RSS score results from the fact that a significant fraction of141

its population falls into the top income bucket, > 200 000 USD. This forces a linear interpolation straight from a 0.73 percentile142

to the boundary of (1,1). We know this interpolation is not trustworthy, which is why we enrich the data at the top percentiles143

with EPI data and hence a comparably large deviation from the true 80th percentile should not worry us too much. For the144

remaining counties, the percentiles still seem to fit the Lorenz curve reasonably well. Therefore, we can conclude that there is145

no need to exclude any outliers from further analyses.146

†We omit the 95th from the analyses here because we know that linear approximation is not a good approximation for top income shares, which is why we use EPI data from B6 for the 95th percentile
and above.
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Supplementary Figure 1. Estimated and true income percentiles for some exemplary counties
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Supplementary Figure 2. RSS for estimated percentiles of income shares. Here, we refer to residuals as the difference between the true income share and estimated income
share. Residuals are then squared and summed over all available data points. This was performed for each county out of all 3063 counties.
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Supplementary Figure 3. Interpolated Lorenz curves from estimated income shares for the four counties with highest RSS scores in Supplementary Figure 2.
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Scaling the Data in an Exemplary County: Teton, Wyoming. Teton, WY, is an example of a county that exhibits a special147

distribution of income that we could not have guessed with the ACS data alone. The data of the American Community Survey148

alone are fine-grained for low and medium income levels, yet the ACS data alone might lead to unrealistic approximations of149

the top populations’ income shares, as the top income bucket > 200 000 USD is an open interval that does not provide any150

information on how people are distributed within that interval. Table B6, however, gives us detailed information on the income151

shares of the top-income percentages of the population on the taxpayer level.152

Apparently, there are a few people living in Teton, WY, that have an income far above the threshold 200 000 USD. In153

Supplementary Figure 4 Panel A, we can clearly see that the income share of the top 5% and top 1% percent of income154

earners far exceeds what we would have expected from the American Community Survey data. Now looking at the scaled data155

presented in Panel B of Supplementary Figure 4, i.e., taking into consideration the information from the EPI dataset, we can156

clearly see the immense difference. This example highlights the importance of considering Table B6 as an additional data157

resource for the construction of close-to-reality Lorenz curves.158
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Supplementary Figure 4. Panel A provides raw Lorenz curve data from ACS and Table B6; Panel B depicts scaled data for Teton County, Wyoming.
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4. Maximum Likelihood Estimation (MLE) via Dirichlet Distribution159

An approach to estimate Lorenz curves based on maximum likelihood estimation (MLE) was proposed by Chotikapanich et160

al. (2002) (21). They assume the income shares from grouped data to follow a Dirichlet distribution. Chang et al. (2018)161

(22) agree with this perspective and argue that the Dirichlet distribution “naturally accommodates the proportional nature162

of income share data and the dependence structure between the shares” (22, p. 2), which is a major advantage compared163

with the NLS estimation procedure (15). Chotikapanich et al. (2002) (21) demonstrate analytically that it is possible to164

relate desired functional forms of the Lorenz curve to the Dirichlet parameters; i.e., parameters of the Dirichlet distribution165

are set so that they incorporate the proposed functional form of the Lorenz curve with its parameters. The density of the166

Dirichlet distribution (with newly defined parameters that consist of the Lorenz curve parameters) is then used to construct167

the likelihood that is maximized later on. In detail, the procedure to model the Lorenz curve models with maximum likelihood168

estimation using the Dirichlet distribution described in (21) is as follows:169

Let ηi = L(ui; θ) be the cumulative income share held by the cumulative share of the population ui. Then, q = (q1, . . . , qM )170

with qi = ηi − ηi−1 are assumed to be random variables that follow a Dirichlet distribution. The probability density function of171

the Dirichlet distribution is given by172

f(q|α) = Γ(α1 + α2 + · · ·+ αM )
Γ(α1)Γ(α2) . . .Γ(αM ) · q

α1−1
1 qα2−1

2 . . . qαM−1
M173

where the gamma function is defined as Γ(α) =
∫∞

0 xα−1 exp−x dx. The method is now to relate the parameters α of the174

Dirichlet distribution to the functional form of the Lorenz curve that we want to estimate. This can be conveniently be done175

by setting176

αi = λ[L(ui; θ)− L(ui−1; θ)]177

where λ is an additional unknown parameter. Now we can write the probability density function as178

f(q|λ, θ) = Γ(λ)
M∏
i=1

q
λ[L(ui;θ)−L(ui−1;θ)]−1
i

Γ(λ[L(ui; θ)− L(ui−1; θ)])179

To now estimate the parameters, we simply have to maximize the log-likelihood that takes the form180

log[f(q|λ, θ)] = log Γ(λ) +
M∑
i=1

(λ[L(ui; θ)− L(ui−1; θ)]− 1) · qi −
M∑
i=1

log Γ(λ[L(ui; θ)− L(ui−1; θ)])181

This maximum likelihood based estimation of Lorenz curve parameters is, however, not widely used. The original study of182

(21) was replicated and advanced by (22) and (15), finding mixed results. In detail, (22) find that the MLE estimation via183

the Dirichlet distribution provides a better fit to empirical data, and (15) find that NLS provides a “better and more reliable184

fit compared to the maximum likelihood estimation” (15, p. 117)). Moreover, (21) find that most Lorenz curve parameter185

estimates are not sensitive to the estimation method; i.e., they compared parameters estimated by NLS and MLE and found186

them yielding very similar point estimates for the parameters for most Lorenz curves proposed (but not all of them, which they187

attribute to estimation instability). (15) find similar point estimates of NLS and MLE as well, but report, as (21), much larger188

standard errors of the estimated parameters of the MLE method.189

5. Akaike Information Criterion (AIC) and AICc Simulation Study190

While the AIC measure of goodness-of-fit is well known as a tool for model selection in many fields of applied statistics, such as191

ecology (23) or astrophysics (24), it has not previously been used to systematically analyze the optimal number of parameters192

needed to adequately represent empirical Lorenz curves. One reason the AIC has not been used in prior literature may be193

the more common use of nonlinear least squares (NLS) approaches as an estimation procedure for Lorenz curves, which does194

not allow for the use of AIC. The NLS approach is widespread because it does not impose distributional assumptions on the195

data, which is a requirement for MLE. However, within the NLS framework, researchers typically rely on the residual sum of196

squares as a measure of goodness-of-fit. Residual sum of squares does not trade-off fit for model complexity, which commonly197

results in the most complicated Lorenz model as the winner. For our research question—determining how many parameters are198

necessary to capture relevant information—we therefore focus on the MLE/AIC framework in order to balance complexity and199

model fit. As mentioned in the paper, we use the small-sample bias adjusted version of the criterion, namely AICc.200

Our key question we want to answer with our simulation study is: Will AICc suggest that we use the correct model? To201

answer this question, we will simulate Lorenz curve data points according to a certain model. Based on these data points,202

we will estimate the parameters of all 17 models we analyzed in the previous chapters and then let AICc choose the best203

model. If AICc actually picks the correct model that was used for data generation sufficiently often, the reliability of AICc as a204

criterion for model selection is supported for our setting. However, if AICc fails to pick the correct model, we have to question205

our previous results and take them with a (big) grain (rock) of salt. We will vary the sample size, i.e., the number of data206

points used for model estimation, to get a clearer picture of where our setting stands with respect to the extent to which we207

trust in AICc picking the correct model. Only then we can judge whether AICc can be used as an indicator of the number of208

parameters needed to describe income-inequality Lorenz curves.209
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Through an AICc-based ranking and Borda voting procedure, we found the Ortega Lorenz curve model (2 parameters),210

the GB2 Lorenz curve model (3 parameters), and the Wang Lorenz curve model (5 parameters) to be among the most211

suitable models. To verify that our judgment, especially between those three most promising models, is trustworthy, we will212

focus on those three models for income share generation. In detail, we will run three simulations, with the only difference213

being the model used to generate the income shares. One might wonder why we run the simulation not only with one214

exemplary income-generating model but with three models. The reason is that we then can cross-compare results between the215

income-generating routines. For example, we could detect whether a certain model is preferred by AICc regardless of the true216

data-generating process. In other words, AICc might always choose the same model.217

Simulation Setup. For ease of comprehensibility, we will describe the simulation procedure in a numbered list. The structure of218

the simulation study is as follows:219

1. Generate a vector that imitates population shares: π = (0, π1, . . . , πn, 1) with πi ∼ Unif(0,1).220

2. Generate a vector of cumulative income shares η = L(π, θ), where L(θ) is a known Lorenz curve model of either type221

Ortega, GB2, or Wang with known parameters θ‡ and population shares π that were generated in the previous step. For222

each Lorenz curve model used for income-share generation, we run a separate simulation.223

3. Use MLE to fit all 17 Lorenz curve models§ to the data generated above and store the model name with minimum AICc224

value.225

4. Evaluate whether AICc has chosen the model that was used to generate the cumulative income shares or not.226

5. Repeat this procedure for sim = 1 000 population share vectors generated. Then vary the length of the population share227

vector and apply the same procedure.228

6. Evaluate the percentage of instances where AICc was able to detect the model that was used for income-share generation229

for each vector length and each of the the Lorenz curve models that are used to generate income.230

Simulation Results. Results show that we observed a high true-model detection rate even for small sample sizes, see Tables231

Supplementary Table 2, Supplementary Table 3, Supplementary Table 4, and Figures Supplementary Figure 5, Supplementary232

Figure 6, Supplementary Figure 7. For our sample size range of 19-23 data points—and assuming that the two-parameter233

Ortega truly was the Lorenz curve generating model—the true discovery rate would be ≥ 0.97 (lower bound of 95% confidence234

interval), see Supplementary Table 4 and Supplementary Figure 7). This result provides additional confidence in the reliability235

of AICc given our specific setting.236

‡To find reasonable parameters, we used the mean value across the US county parameter estimates.
§See Table 1 in the paper
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Supplementary Table 2. Rate of bias corrected AIC picking the true data-generating model for varying sample sizes out of 1 000 simulation
runs. A sample size of 102 means we have 100 data points generated between 0 and 1, plus 0 and 1 as boundary values. Lower and upper
bounds correspond to the 95% confidence interval, based on a binomial test. True model: GB2

sample size rate lower bound upper bound
6 0.766 0.738 0.792
7 0.830 0.805 0.853
8 0.879 0.857 0.899
9 0.881 0.859 0.900
10 0.894 0.873 0.912
11 0.909 0.889 0.926
12 0.915 0.896 0.932
13 0.923 0.905 0.939
14 0.911 0.892 0.928
15 0.912 0.893 0.929
16 0.921 0.903 0.937
17 0.911 0.892 0.928
18 0.909 0.889 0.926
19 0.921 0.903 0.937
20 0.917 0.898 0.933
21 0.921 0.903 0.937
22 0.914 0.895 0.931
23 0.920 0.901 0.936
24 0.910 0.891 0.927
25 0.923 0.905 0.939
26 0.921 0.903 0.937
27 0.925 0.907 0.941
32 0.928 0.910 0.943
42 0.940 0.923 0.954
52 0.952 0.937 0.964
77 0.974 0.962 0.983

102 0.974 0.962 0.983
127 0.981 0.970 0.989
152 0.992 0.984 0.997
177 0.991 0.983 0.996
202 0.978 0.967 0.986
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Supplementary Table 3. Rate of bias corrected AIC picking the true data-generating model for varying sample sizes out of 1000 simulation
runs. A sample size of 102 means we have 100 data points generated between 0 and 1, plus 0 and 1 as boundary values. Lower and upper
bounds correspond to the 95% confidence interval, based on a binomial test. True model: Wang

sample size rate lower bound upper bound
6 0.000 0.000 0.004
7 0.000 0.000 0.004
8 0.169 0.146 0.194
9 0.408 0.377 0.439

10 0.558 0.527 0.589
11 0.648 0.617 0.678
12 0.683 0.653 0.712
13 0.709 0.680 0.737
14 0.727 0.698 0.754
15 0.739 0.711 0.766
16 0.728 0.699 0.755
17 0.755 0.727 0.781
18 0.768 0.741 0.794
19 0.739 0.711 0.766
20 0.765 0.737 0.791
21 0.780 0.753 0.805
22 0.775 0.748 0.801
23 0.774 0.747 0.800
24 0.781 0.754 0.806
25 0.802 0.776 0.826
26 0.765 0.737 0.791
27 0.776 0.749 0.801
32 0.787 0.760 0.812
42 0.825 0.800 0.848
52 0.842 0.818 0.864
77 0.878 0.856 0.898

102 0.923 0.905 0.939
127 0.933 0.916 0.948
152 0.959 0.945 0.970
177 0.969 0.956 0.979
202 0.983 0.973 0.990
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Supplementary Table 4. Rate of bias corrected AIC picking the true data generating model for varying sample sizes out of 1 000 simulation
runs. A sample size of 102 means we have 100 data points generated between 0 and 1, plus 0 and 1 as boundary values. Lower and upper
bounds correspond to the 95% confidence interval, based on a binomial test. True model: Ortega

sample size rate lower bound upper bound
6 0.986 0.977 0.992
7 0.991 0.983 0.996
8 0.995 0.988 0.998
9 0.992 0.984 0.997
10 0.984 0.974 0.991
11 0.984 0.974 0.991
12 0.984 0.974 0.991
13 0.980 0.969 0.988
14 0.978 0.967 0.986
15 0.986 0.977 0.992
16 0.983 0.973 0.990
17 0.983 0.973 0.990
18 0.985 0.975 0.992
19 0.985 0.975 0.992
20 0.989 0.980 0.994
21 0.981 0.970 0.989
22 0.985 0.975 0.992
23 0.986 0.977 0.992
24 0.987 0.978 0.993
25 0.981 0.970 0.989
26 0.972 0.960 0.981
27 0.969 0.956 0.979
32 0.965 0.952 0.976
42 0.972 0.960 0.981
52 0.980 0.969 0.988
77 0.986 0.977 0.992

102 0.984 0.974 0.991
127 0.981 0.970 0.989
152 0.994 0.987 0.998
177 0.991 0.983 0.996
202 0.997 0.991 0.999
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Supplementary Figure 5. Simulation results for GB2 being the true income share generating model out of a selection of 17 possible models. Point estimates of the percentage
of correct model detection are reported together with confidence bounds of the 95% confidence interval.
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Supplementary Figure 6. Simulation results for Wang being the true income share generating model out of a selection of 17 possible models.Point estimates of the percentage
of correct model detection are reported together with confidence bounds of the 95% confidence interval.
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Supplementary Figure 7. Simulation results for Ortega being the true income share generating model out of a selection of 17 possible models.Point estimates of the
percentage of correct model detection are reported together with confidence bounds of the 95% confidence interval.
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6. Voting237

For interested readers, we recommend the literature of the Handbook of Social Choice and Welfare (25), which describes the238

voting procedures in more depth. This section is based on this handbook as well and aims to present voting procedures relevant239

for our study in a comprehensive way.240

According to Arrow’s impossibility theorem, there exists no single best voting procedure across the board (26). As a result,241

researchers have to choose the voting procedure that best fits the problem at hand. We suggest that the Borda count is242

particularly well suited for our context as it provides insight into which fitted model has good performance across all counties243

instead of a great fit in some counties but an inferior fit in other counties. We note that others arrive at a different conclusion244

and prefer a different voting procedure; in that case, we encourage interested readers to use our comprehensive voting results245

given in the subsection below.246

Relying on the principle ‘the winner takes all,’ plurality voting is a simple and intuitive voting procedure. Each individual247

has one vote, and the candidate receiving the most votes wins. Of course, this reveals only a fraction of the voters’ preferences,248

namely their top choice, but it neglects any remaining preference ordering behind the top choice. In our case, plurality voting249

corresponds to evaluating which Lorenz curve model was ranked first the most.250

A procedure that does not only take the first choice into consideration but performs pairwise comparisons between options251

is the so-called Condorcet procedure. In detail, each option is compared with any other option, and a winner between those252

options is determined. A quick example illustrates the procedure: Imagine that there are three possible options, A, B, and C,253

to choose from. Individual 1 has the preference ordering A > B > C¶ while the preference of individual 2 is B > C > A. To254

aggregate the preferences of both individuals, we can now compare how often an option was ranked ahead of another option.255

In this case, option A was preferred over B once (by individual 1), B was preferred over C twice (by individual 1 and 2), and C256

was preferred over A once (by individual 2); so in this case, the winner of the Condorcet procedure is option B. As we have an257

AICc-based ranking between Lorenz curve models for each county, we can perform such pairwise comparisons across counties.258

Note that the dominance matrix introduced above depicts these pairwise comparisons, i.e., displays how often a certain model259

was preferred over the remaining Lorenz curve models.260

However, the Condorcet procedure can result in circular preferences and compares the options only in a pairwise fashion. A261

voting procedure that fully takes into account the ranking of the options is the so-called Borda count. This procedure scores the262

different options according to their ranks. In detail, if there are n options to choose from, the option ranking first receives n263

points, the option ranking second n− 1 points, . . . , the least favored option receives 0 points. The points received are summed264

for all individuals, and the option receiving the most points wins the Borda count. Thus, options with a consistently high265

ranking have a greater chance to win than options that are brilliant for some individuals but heavily undesirable for others.266

This is exactly the behavior we desire for our Lorenz curve model comparison: we want to detect the model that overall267

achieves good performance across counties. Therefore, the Borda count is the most relevant voting procedure for our purpose.268

Voting results. It is important to again emphasize that the Borda count winner is not the only choice one could make. Other269

Lorenz curve models winning other voting procedures might be legitimate models as well. The crucial point is that one270

has to decide which aspects to focus on. By design, different voting mechanisms will lead to different model winners, as271

they–purposely–emphasize different aspects. Where researchers want to emphasize other aspects, another Lorenz curve model272

might be more useful. As Arrow’s impossibility theorem states, the aggregation of preferences cannot be performed using a273

single best selection procedure but with different procedures for different kinds of problems and suitable outcomes. For our274

setting, we find the Borda count procedure superior. However, we do not want to discourage researchers from concluding that275

other Lorenz curve models might be superior if faced with a different scenario. We therefore provide various voting results276

below.277

In our application, the results are as follows: in plurality voting, the Wang Lorenz curve model wins; applying the Condorcet278

procedure, the winner is the GB2 Lorenz curve model; and the Borda count winner is the Ortega Lorenz curve model. As the279

Borda count voting procedure depends on the goodness-of-fit criterion used to judge the models, we cross-check whether those280

results are driven by AICc or whether they are robust to the use of another information criterion. Therefore, we rerun the281

Borda voting procedure using the Bayesian information criterion (BIC) as indicator to rank the models. The BIC is defined as282

BIC = −2 · `(θ̂) + 2p · ln(n)283

Voting results are similar to the AICc-based Borda count; see 6. This result shows that these three models (Wang, GB2,284

and Ortega) are the most promising.285

¶ In words: Individual 1 prefers option A over B over C, so individual 1 ranks A first, B second, and C third.
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Supplementary Figure 8. Condorcet matrix on a county level. Count of how often models in the rows achieve a higher AICc rank than models in the columns, out of all 3 056
counties.
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Supplementary Table 5. Plurality voting results. In each county, the Lorenz curve model with the lowest AICc value gets one vote.The model
with the highest number of total votes wins.

Num. of
Parameters Model Votes
5 Wang 998
2 Ortega 546
2 Dagum 399
3 GB2 364
3 GB1 355
4 Sarabia 153
2 Generalized Gamma 80
2 Rasche 70
2 Singh-Maddala 53
1 Lognormal 28
1 Gamma 6
1 Weibull 2
3 Abdalla-Hassan 1
1 Kakwani-Podder 1
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Supplementary Table 6. Borda count result using AICc as information criterion. In each county, the Lorenz curve models were scored using
the Borda count procedure. The model with the highest Borda score wins.

Num. of
Parameters Model Borda Score
2 Ortega 42597
3 GB2 41906
2 Dagum 38791
5 Wang 38187
2 Singh-Maddala 36274
3 Abdalla-Hassan 35354
4 Sarabia 32272
2 Rasche 32131
1 Lognormal 24749
2 Generalized Gamma 23178
3 GB1 22852
1 Gamma 13926
1 Weibull 11400
1 Pareto 9522
1 Rhode 7296
1 Chotikapanich 4071
1 Kakwani-Podder 1110
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Supplementary Table 7. Borda count result using BIC as information criterion. In each county, the Lorenz curve models were scored using
the Borda count procedure. The model with the highest Borda score wins.

Num. of
Parameters Model Borda Score
2 Ortega 42595
3 GB2 41760
5 Wang 38861
2 Dagum 38806
2 Singh-Maddala 36297
3 Abdalla-Hassan 35153
4 Sarabia 32208
2 Rasche 32109
1 Lognormal 24830
2 Generalized Gamma 23084
3 GB1 22779
1 Gamma 13931
1 Weibull 11420
1 Pareto 9594
1 Rhode 7310
1 Chotikapanich 3909
1 Kakwani-Podder 970
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7. Analysis of BIC differences286

In order to rule out that the choice of information criterion (AICc) influenced the results of our analysis, we reran the ∆
analysis while using the Bayesian information criterion (BIC). The differences in BIC are defined in analogy to the AICc
differences (∆) as

BIC difference = BICi −BICj [1]

For BIC, the analysis of differences is also applied in the literature, yet with a slightly differing usage of wording and287

boundaries. While the interpretation of the differences is the same for both differences in AICc and BIC (namely, the larger the288

difference between the values, the less support there is for the competing model’s ability to provide as good an approximation of289

the data as the other one), the boundaries are shifted. (27) sets the boundaries of BIC differences as described in 7. Respecting290

those boundaries, we arrive at similar histograms as with the analysis of AICc differences; see Figures Supplementary Figure 9,291

Supplementary Figure 10, and Supplementary Figure 11. Hence, we conclude that the superiority of Ortega compared with292

single-parameter models is irrespective of the chosen information criterion.

BIC difference Evidence
0-2 weak
2-6 positive
6-10 strong
>10 very strong

293
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Supplementary Figure 9. Histogram of BIC differences between the one-parameter lognormal model i and the two-parameter Ortega and j.
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Supplementary Figure 10. Histogram of BIC differences between the three-parameter GB2 model i and the two-parameter Ortega and j.
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Supplementary Figure 11. Histogram of BIC differences between the five-parameter Wang model i and the two-parameter Ortega and j.
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8. ∆-AIC analysis of Ortega vs. GB2 and Ortega vs. Wang model294

Using the Borda count voting procedure, we have determined the two-parameter Ortega Lorenz curve to be the winning model.295

However, the GB2 model using three parameters tightly comes second in the Borda count, and the Wang five-parameter model296

also performs well and wins the majority voting procedure. So do the three- and five-parameter models potentially provide297

substantially more information for some counties than a two-parameter model? To investigate this question, we calculated the298

AICc differences between Ortega and GB2 as well as Ortega and the Wang model.299

We draw on prior literature, namely the guidelines given by Burnham and Anderson (28), to set up an evaluation strategy300

tied to the specific problem at hand of investigating the extent to which a certain model fits the data better than other models.301

Burnham and Anderson (28) acknowledge that an interpretation of absolute AIC values, and hence a comparison between302

competing models, is hindered because of arbitrary constants. Instead, (28) propose using differences in AIC values, ∆i =303

AICi−AICmin, that represent the information loss experienced when using model i rather than the best model which exhibits304

the minimum AIC value AICmin. The severity of information loss can be characterized by defining intervals for ∆i values, with305

larger values representing a higher amount of information loss. Burnham and Anderson (28) provide some rules of thumb:306

Models i with ∆i,j ≤ 2 have substantial support; for 4 ≤ ∆i,j ≤ 7 considerably less support and for ∆i,j > 10 no support for307

being the best approximating model in the candidate set. In other words, the higher the ∆i value, the less support there is308

for the hypothesis that the two models of comparison provide an equally well characterization of the empirical data. This309

information can then be used to evaluate the strength-of-evidence in favor of the minimum AIC model (28), i.e., to get a sense310

of whether the minimum AIC model is substantially better.311

For the setting of a Lorenz curve comparison as outlined in this paper, we generalize the evaluation strategy of (28) and312

fine-tune the interpretation in order to provide a more intuitive understanding. First, let us note that we work with the313

small-sample bias corrected version of AIC values (AICc values), which does not affect the evaluation strategy, but changes the314

name of the strategy to evaluating AICc differences instead of AIC differences. Second, we do not necessarily compare the315

model of interest to the minimum AICc model in the respective US county, but fixed models, e.g., Ortega versus lognormal316

model. Hence, instead of ∆i = AICi −AICmin, we introduce a more general version ∆i,j := AICi −AICj . To enhance ease of317

interpretation, we do not take on the perspective of (28) that focus on characterising the support of various models in being the318

best approximation of the data, but propose a slightly different perspective on the values: Starting off with the interpretation319

of (28) that ∆i,j represents the information loss experienced when using model i rather than model j, we frame the ∆i,j values320

directly as strength-of-evidence in favor of model j. This means that higher values of ∆i,j provide evidence in favor of model321

j capturing the information given by the empirical data more aptly. With this general setup of ∆i,j values, we might now322

encounter the situation of negative values in AICc differences, which is not possible with the AIC difference values defined in323

(28) as they set model j to the model with minimum AIC value. However, negative values of AICc values simply correspond to324

the case where i and j are reversed, hence gathering evidence for model i or, in other words, evidence for counter model j.325

Finally, we are forced to redefine the value intervals: (28) leave out interpretation guidelines for ∆i in the intervals [2, 4] and326

[7, 10], and we therefore extend their intervals in a conservative manner.327

In summary, our strength-of-evidence classification in terms of AICc differences is as follows: We find inconclusive evidence328

on whether model j, e.g., the Ortega model, is superior in modeling relevant information compared to model i, e.g., the329

lognormal model, if the AICc difference ∆i,j is ∈ [-4,4], some evidence that model j is superior if ∆i,j ∈ [4,10] and decisive330

evidence that model j is superior to model i if ∆i,j > 10. If ∆i,j ∈ [−4,−10], we find some evidence against model j’s331

superiority, and decisive evidence against model j’s superiority for ∆i,j < −10. With histograms of AICc differences (∆i,j), we332

can see how often, i.e., in how many US counties, we find supporting evidence for whether one model indeed provides more333

substantial information about the data.334

As a recap, for the comparison between an Ortega two-parameter model and the single-parameter lognormal model, we find335

a clear picture in support of the two-parameter model; see Figure 2 in the main text.336

Now evaluating Ortega versus GB2, we see a much more inconclusive picture; see Supplementary Figure 12. For most of the337

counties, there is inconclusive evidence; i.e., there is substantial support that both models perform similarly well in modeling338

the information given in the empirical data. This indicates that the three- and two-parameter models are somewhat comparable.339

Given this information, it is debatable which model to prefer, but as Ortega is the simpler model, we clearly favor it over GB2.340

In comparing the Ortega model and the five-parameter Wang model, we get a more distinct histogram; see Supplementary341

Figure 13. On the one hand, we can clearly see that for many counties, we have evidence that the five-parameter model342

captures relevant information better than the two-parameter Ortega model. On the other hand, we find counter-evidence in343

many counties as well: i.e., that the two-parameter model performs that task better. This result is unsurprising given which344

aspects the various voting procedures emphasize: the Borda count values good performance across counties (Ortega won),345

whereas majority voting honors how often a model performs best in a county (Wang won). That is, the Wang five-parameter346

model is excellent many times but also inferior many times compared with the two-parameter Ortega model. As we seek a347

model that performs well across all US counties, we prefer Ortega for that purpose.348
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Supplementary Figure 12. Histogram of AICc differences (∆i,j ) between the three-parameter GB2 model i and the two-parameter Ortega and j.
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Supplementary Figure 13. Histogram of AICc differences (∆i,j ) between the five-parameter Wang model i and the two-parameter Ortega and j.
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9. Nonlinear Least Squares (NLS)349

In terms of Lorenz curves, we are dealing with functions that are nonlinear in their parameters, which is why we call the
framework in this case nonlinear least squares (NLS). The NLS approach is a widely used method for estimating the parameters
of functional forms of the Lorenz curve, e.g., in (8, 15, 29–32). The objective we are trying to minimize is the sum of squared
residuals. We recognize the estimation task as

min
θ

K∑
i=1

(L(ui, θ)− ηi)2 [2]

where θ is the parameter vector of the Lorenz curve model and ηi the cumulative empirical income share observed for the350

cumulative population share ui.351

Using the NLS procedure, we get consistent estimates. However, they are not efficient, as least squares estimation in352

the Lorenz curve setting exhibits auto-correlated and heteroskedastic residuals (5, 8). Krause (2014) used the approach of353

minimizing the MSE in their recent study and mentions that other procedures to gain efficiency, e.g., proposed by (10), hardly354

change results given their setting.355

A main disadvantage of NLS stems from ignoring the proportional nature of the data (33) and “overlook[ing] the fact that356

the sum of the income shares is, by definition, equal to one” (8, p. 11). Both features of the data are neglected by NLS and357

hence fruitful opportunities in using this special structure of the data are missed.358

Apart from that, the NLS estimation method is still widely used for estimating Lorenz curves and does not provide efficient,359

but more importantly, consistent, estimates.360

NLS estimates for each county are provided for the present study and will be evaluated as a robustness check.361

10. Comparison of MLE and NLS Estimates362

We explore whether potential estimation method artifacts account for our results by comparing the estimated parameters363

for the 17 Lorenz curve models using both NLS and MLE. We find similar point estimates for most model parameters. The364

median relative difference between the MLE and NLS estimates across counties is depicted in Supplementary Table 8 below.365

An exception is the GB1 model, for which differences were large: for the generalized gamma and GB1 Lorenz curve model,366

the differences between NLS and MLE estimates were large, e.g., 84.1659 for the second GB1 parameter. This observation is367

not surprising, as those two Lorenz curve models exhibited severe estimation instabilities, which we take as indicating their368

unsuitability as a basis for deriving inequality measures. For this reason, we classify the GB1 model as unsuitable and exclude369

it from further analysis.370

The remaining models exhibit small relative differences between both estimation methods. For example, the median relative371

difference between MLE and NLS point estimates of the Ortega parameters was 0.0234 for Ortega parameter α and 0.0165 for372

Ortega parameter β. Hence, we have no reason to believe that the estimation technique has a systematic influence on the373

model parameters estimated.374

We refer to the relative difference as given by375

relative difference = |θ̂MLE − θ̂NLS |
|θ̂NLS |

376

The median of the relative difference of parameter estimates across all N = 3 056 US counties included in our study is given377

in Supplementary Table 8.378
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Supplementary Table 8. Median relative difference between MLE and NLS estimates across all counties.

Model Param. 1 Param. 2 Param. 3 Param. 4 Param. 5
Abdalla-Hassan 0.0315 0.9410 0.0168 - -
Chotikapanich 0.1498 - - - -
Dagum 0.0605 0.0186 - - -
Gamma 0.2135 - - - -
GB1 83.3003 84.1659 0.8906 - -
GB2 0.2329 0.1884 0.1548 - -
Generalized Gamma 80.8858 0.8900 - - -
Kakwani-Podder 0.2040 - - - -
Lognormal 0.0165 - - - -
Ortega 0.0234 0.0165 - - -
Pareto 0.0751 - - - -
Rasche 0.0218 0.0145 - - -
Rhode 0.0250 - - - -
Sarabia 0.3857 0.0292 0.0890 0.0680 -
Singh-Maddala 0.0718 0.0342 - - -
Wang 0.2122 0.1616 0.0894 0.4698 0.9285
Weibull 0.0810 - - - -
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11. Relationship between Ortega parameters and Pareto index379

Sarabia et al. (1999) (34) introduced a general method to build ordered families of Lorenz curves, noting that one of the Pareto380

Lorenz curve families coincides with the Ortega Lorenz curve. We draw on this work in advancing the correspondence between381

the Pareto distribution parameter and one of the Ortega parameters.382

To derive the relationship between Ortega parameter β and the Pareto index, let us first introduce some definitions. The383

Ortega Lorenz curve is given by (12):384

LOrtega(u) = uα · (1− (1− u)β) [3]385

where α ≤ 0, 0 < β ≤ 1.386

The cumulative distribution function of the classical Pareto distribution is given by387

F (x) = 1−
(
σ

x

)a
[4]388

where σ, a > 0. Following this notation, we can recognize σ as a scale parameter and a as a shape parameter. The Pareto index389

equals the shape parameter of the classical Pareto distribution (e.g., used in (35)). Being consistent with our notation, we can390

therefore define391

Pareto index := a [5]392

To show that there is a relationship between β and a, it is useful to calculate the Lorenz curve for the classical Pareto393

distribution first. The general definition of a Lorenz curve is given by (36):394

L(u) = µ−1
∫ u

0
F−1(t)dt [6]395

where µ is the finite mean and F−1(t) the inverse of the cumulative distribution function. For the classical Pareto case with
µ = aσ

a−1 and F−1(t) = σ(1− t)− 1
a , we get

LPareto(u) = a− 1
aσ

∫ u

0
σ(1− t)−

1
a dt [7]

= a− 1
aσ

[
−σ

1− 1
a

· (1− t)1− 1
a

]u
0

[8]

= a− 1
aσ

[(
−σ

1− 1
a

· (1− u)1− 1
a

)
−
(
−σ

1− 1
a

)]
[9]

=
(

1− 1
a

)
·
[
−1

1− 1
a

(1− u)1− 1
a + 1

1− 1
a

]
[10]

= 1− (1− u)1− 1
a [11]

We can see that the Pareto Lorenz curve depends on the Pareto index a only. If we are able to relate the Pareto Lorenz curve396

to the Ortega Lorenz curve and demonstrate that the Pareto index is linked to one of the two Pareto parameters only, we know397

that we can transform that parameter into the Pareto index. (34) actually introduced a family of Lorenz curves that helps398

explain the relationship between the Pareto Lorenz curve and the Ortega Lorenz curve. In detail, their second theorem states:399

Theorem 2 ((34)) Let L(p) be a Lorenz curve and consider the transformation Lα(p) = pα · L(p), where α ≤ 0. Then, if400

α ≥ 1, Lα(p) is a Lorenz curve too. In addition, if 0 ≤ α < 1 and L′′′(p) ≥ 0, Lα(p) is also a Lorenz curve.401

(34) further show that the condition L′′′(p) is satisfied for the Pareto Lorenz curve such that for α ≥ 0, we can transform
the Pareto Lorenz curve using theorem 2, which yields

Lα(u) = uα · LPareto(u) [12]

= uα ·
(

1− (1− u)1− 1
a

)
[13]

Now looking at the Ortega Lorenz curve as defined in 3, we can clearly see that the Ortega Lorenz curve is nothing other than402

the Pareto Lorenz curve, extended by a newly introduced parameter α through the use of theorem 2 and a redefined parameter403

β := 1− 1
a

[14]404

In other words, we can see the Ortega Lorenz curve as an extension to the Pareto Lorenz curve. Having established this close405

link between the two Lorenz curves, we can think of Ortega parameter β as being in close relation to the Pareto index a, using406

the relationship defined in 14. If the true income distribution were to follow a Pareto distribution, Ortega parameter α would407

be zero and the Ortega parameter β would be an exact monotonic transformation of the Pareto index. However, in cases408

where the true income distribution was not generated by a Pareto distribution, of course, the additional estimation of Ortega409

parameter α might capture aspects that are also correlated to β, such that the exact monotonic transformation given in 14410
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is rather an approximate relationship, depending on the data. Although this is a weaker statement, it is still useful for our411

purpose: we want to know which aspects of the income distribution the Ortega parameters capture. We know that the lower412

the Pareto index, the larger the proportion of very-high-income people. And we derived above that the higher the Pareto413

index associated with the income distribution, the higher the Ortega parameter β. Having demonstrated the close relationship414

between β and the Pareto index a in the above section, we see this as evidence of a capturing the occurrence of very top415

incomes. We therefore conclude that Ortega β has the following interpretation: the lower the Pareto index, the larger the416

proportion of very-high-income people. We therefore propose it as a measure of top-concentrated income inequality.417

12. Interpreting the Ortega Lorenz curve418

Visual inspection of Ortega parameters. To visually inspect how a change in parameters affects the Ortega Lorenz curve,419

we simulate Ortega Lorenz curves while varying α and γ. The R code simulation_ortega_lorenz_curves.R replicates this420

simulation and is available in the GitHub repository we provide for this paper (see www.measuringinequality.com). In detail,421

first we plot the Ortega Lorenz curves varying α between 0.01 and 1.5 while keeping γ fixed at 0.5 (for α, the side constraint is422

≥ 0; the upper limit 1.5 is chosen as an extension to the empirical values that valued 1.23 at max). In our empirical estimation423

of US county-level Ortega Lorenz curves, for α a typical value was 0.5 and for γ 0.5, which is why we fix the respective values424

at that level. Then, we plot Ortega Lorenz curves with α = 0.5 and vary γ between 0.01 and 0.99 (side constraint 0 ≤ γ < 1).425

Our simulation results are generally in line with prior theory, i.e., that Ortega parameter γ is associated with top-concentrated426

inequality. The asymmetry line in Figure 3 in the main text of the paper, Panel B, facilitates comprehension whereby we427

observe a disproportionate change in the Lorenz curve on the right side (i.e., at higher incomes). Note that we observe428

top-concentrated inequality arising when there is a step increase in the Lorenz curve shortly ahead of the cumulative share of429

population reaching 100%. Further, our observations are in accordance with the direction of change we expected through the430

relationship between γ and the Pareto index, i.e., a higher value of γ indicating a higher level of top-concentrated inequality.431

In sum, our simulation study suggests that α is a reflection of bottom0concentrated inequality whereas γ is a reflection of432

top-concentrated inequality.433

When varying α while keeping γ a fixed constant, we can see that an increase in α stretches the left side of the Lorenz curve434

toward the x-axis (i.e., at lower incomes). The higher α, the more this is the case, as seen in Figure 3A in the main text. This435

effect can again be acknowledged when adding the asymmetry line to the plot, which helps in identifying the disproportionate436

change in the curves. With a more intense change on the left side, one can conclude that α captures specificities on the left tail437

of the income distribution.‖ Therefore, we conclude that α is a measure of bottom-concentrated inequality.438

Determining the relationship between Ortega parameters and other measures of inequality. To further investigate the interpre-439

tation of the Ortega parameters, we relate them to income ratios, as they are more intuitive and used in some prior research to440

measure inequality. First, we explore the dependency between Ortega parameters and common percentile measures (95/50 and441

50/10 ratios). Then, we move on to evaluate which percentile ratios might reflect the information captured by the Ortega442

parameters more precisely.443

A common measure of top-concentrated income inequality is the fraction of income held by the 95th percentile divided by444

the median income share (also known as a 95/50 ratio), whereas bottom-concentrated income is often measured using a 50/10445

ratio; see (37–39). We have argued that Ortega parameter γ is related to top-concentrated inequality and should increase with446

higher levels of inequality. The 95/50 ratio also aims at capturing the phenomenon of top-concentrated income inequality, which447

is why we suspect the quantities to be highly positively correlated. We also hypothesized that Ortega parameter α is related to448

bottom-concentrated income inequality and should increase with higher levels of inequality. Another measure that aims at449

capturing bottom inequality is the 50/10 ratio, i.e., the income share held by the lower 50% of the population divided by the450

income share held by the lower 10% of the population. We suspect that both quantities, i.e., α and the 50/10 ratio, should be451

highly positively correlated because they should measure the same underlying phenomenon (bottom-concentrated inequality).452

To test whether our suggested correlational dependencies hold true, we first simulate Ortega Lorenz curves with varying453

parameters α and γ, then calculate the income percentile ratios 95/50 and 50/10 for those Lorenz curves, and consequently454

analyze the correlation between Ortega and percentile ratio quantities. In detail, we simulate a total of 10 000 Ortega Lorenz455

curves with varying parameter values. We vary α from 0.01 to 1 with a step size of 0.01 and γ from 0 to 0.99 with the same456

step size of 0.01. Subsequently, we calculate partial correlations between the quantities. Doing so, we control for all other457

variables included in this analysis; i.e., we correlate α with the 50/10 ratio controlling for γ and the 95/50 ratio.458

Our results, depicted in Supplementary Table 9, show that α indeed highly correlates with the bottom-concentration ratio459

50/10 while γ highly correlates with the top-concentration ratio 95/50. However, it is worth pointing out that this correlational460

dependency only becomes apparent when focusing on the full parameter space of γ (0 ≤ γ < 1) while limiting the parameter461

space of α for the same range as γ. For the empirical US county-level Lorenz curves, we encountered a parameter range of 0.12462

to 1.23 for α and 0.3 to 0.93 for beta. In this range of parameters, the correlation between α and the 50/10 ratio, and γ and463

the 95/50 ratio, gets distorted, which indicates high sensitivity of the correlational structure regarding the parameter range.464

This gives us reason to believe that those ratios might not reflect the type of top- and bottom-concentrated inequality that465

is measured by the Ortega parameters. Revising Figure 3 in the main text, we can see γ affecting rather the very top of the466

distribution. Exploring the dependency structure percentile ratios and the Ortega parameters, it indeed becomes clear that467

‖A high level of bottom-concentrated inequality can be recognized from the Lorenz curve if the curve is rather flat near the bottom percentiles but exhibits a sharp increase before reaching the median
population.
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Ortega γ is instead measuring inequality in the very top percentiles and that α captures a broader range of the distribution. We468

find the correlational dependency between the 99/90 ratio with γ and 90/10 ratio with α very robust to the parameter range.469

Also, the strength of correlational dependency is more distinct; see Supplementary Table 10, which depicts the correlations470

within the same parameter range used for Lorenz curve generation as in Supplementary Table 9.471

We therefore conclude that our suggested interpretation of the Ortega parameters should not directly be linked to current472

measures of top- and bottom-concentrated inequality, i.e., the 95/50 and 50/10 ratios, but to measures of inequality at the very473

top (99/90 ratio) and most of the remainder of the distribution (90/10 ratio).474

Supplementary Table 9. Partial correlations between Ortega parameters and percentile ratios, controlling for all other quantities; e.g., the
partial correlation between γ and the 95/50 ratio is 0.940 after controlling for α and the 50/10 ratio.

50/10 ratio 95/50 ratio

Ortega α 0.786 0.137
Ortega γ -0.259 0.940

Supplementary Table 10. Partial correlations between Ortega parameters and percentile ratios, controlling for all other quantities; e.g., the
partial correlation between γ and the 99/90 ratio is 0.9088 after controlling for α and the 90/10 ratio.

90/10 ratio 99/90 ratio

Ortega α 0.9081 -0.0408
Ortega γ -0.0620 0.9088

Supplementary Figure 14. Panel A illustrates two very different Lorenz curves exhibiting the same 90/50 percentile ratio. In Panel B we can notice that when fixing both the
90/50 and the 50/10 percentile ratios into a similar range, the resulting Lorenz curves must have a similar shape. This indicates that (at least) two parameters should be
provided to limit the potential volatility of the resulting Lorenz curves.

Analytical investigation of the Ortega Lorenz curve: Derivatives. A natural way to investigate how a function is affected by its475

parameters is to inspect the (partial) derivatives. For the Ortega Lorenz curve, the partial derivatives with respect to α and γ476

are477

δ

δα

(
uα(1− (1− u)1−γ)

)
= (uα(1− (1− u)1−γ) log(u) [15]

δ

δγ

(
uα(1− (1− u)1−γ)

)
= (uα(1− u)1−γ log(1− u) [16]

From this it is not immediately obvious how the Ortega Lorenz curve is affected by the parameters. However, we can478

note that both derivatives are ≤ 0 within the allowed parameter space. What we are especially interested in is whether479

the interpretation of the parameters suggested by the simulation study (α more intensely emphasizing bottom-concentrated480
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inequality and γ highlighting top-concentrated inequality) can be seen analytically as well. To test this, we take a closer look481

at the rate of change, i.e., the partial derivatives, at certain regions along the x-axis. In other words, if the Lorenz curve482

function is more intensely affected by a parameter in a certain region of the population, we could conclude that this parameter483

is more sensitive to this area of the population: e.g., the top or bottom. Supplementary Figure 15 visualizes the derivatives of484

the Ortega Lorenz curve with respect to α and γ along the x-axis (i.e., cumulative share of population) while keeping the485

parameters themselves fixed at α = 0.5, γ = 0.5, just as when simulating Ortega Lorenz curves in the above section. Note that486

we need to evaluate the absolute values of rate of change for the respective parameters, i.e., the absolute values of the partial487

derivatives. From Supplementary Figure 15, we can clearly see that a variation in α most intensely affects the Lorenz curve488

around the middle of the population (the absolute value of the derivative with respect to α is largest around the percentiles ∼489

0.45-0.65). In contrast, a variation in γ has the highest rate of change within the top percentile of the population (the absolute490

value of the derivative with respect to γ is largest around the top percentiles ∼ 0.80-0.95.491

Supplementary Figure 15. Value of the derivatives of the Ortega Lorenz curve function L(u) = u0.5 (̇1 − (1 − u)0.5 across the cumulative share of population.
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13. Approximating the empirical Gini coefficient492

To assess how well the different models approximate the main distributional statistics related to inequality, we compare the493

Gini coefficients implied by the model parameters with those Gini coefficients calculated nonparametrically on the US county494

data. The nonparametric Gini coefficients are calculated using the given data points of the empirical income distribution with495

linear interpolation, whereas the Gini coefficients implied by the models utilize integral calculus∗∗ for determining the area496

between the Lorenz curve and the line of perfect inequality.497

These analyses, visualized in Supplementary Figure 16, reveal that when taking into account the number of parameters498

included in the model—ideally as few as possible—we can see that the Ortega model provides a reasonable trade-off between499

deviation from the nonparametric Gini and the number of parameters needed. Most notably, one-parameter models (red500

distributions in the figure) substantially deviate from the ideal average deviation of zero, while two-parameter models (brown)501

are a major improvement. Across the two-parameter models, the Ortega model is the one closest to the deviation of zero502

(dotted line) with a substantial number of data points (see boxplot touching the dotted line). While with more parameters503

(green, blue, and purple boxplots), precision further increases, the improvements are much smaller than those between one-504

and two-parameter models. This analysis demonstrates that using more than one parameter improves the approximation of505

empirical distributional statistics such as the Gini coefficient, and that further improvement in precision with more parameters506

is possible but is much smaller.507

Number of model parameters

Supplementary Figure 16. Comparison across various parametric Lorenz curve models in approximating the empirical (nonparametric) Gini coefficient. Note that in order to
prevent a masking effect of severe outliers, we omitted them in the plot. The boxes depict the 25th, 50th and 75th percentiles of the deviations from the empirical Gini.
The whiskers extend from the hinge to the smallest value at most (or largest value and no further, respectively) 1.5 times the inter-quartile range of the hinge. Minimum and
maximum values as well as the center of the distributions are visualized by plotting the actual distribution of deviations above the boxes.

∗∗For the Lorenz curve models based on the generalized beta distribution (GB1, GB2), we faced difficulties in calculating the integrals necessary for parametric Lorenz curve derivation, which is why these
models are missing in our analysis.
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14. Exploratory correlational study508

In our exploratory correlational study, for which we provide results below, we correlate 100 variables from policy-relevant fields509

to inequality measures. Our source of data is the ACS Survey 2011-2015, from which we pulled relevant source tables directly510

from https://data2.nhgis.org/main, and the data from (40) and (41) are publicly available at https://opportunityinsights.org. Code to511

replicate the study, as well as detailed information on the data used—i.e., a codebook—is available at www.measuringinequality.512

com.513

We propose the use of both the Ortega parameters simultaneously (i.e., in a regression setting, researchers should include514

both Ortega parameters as independent variables within the regression model equation), which is why we calculate partial515

Pearson correlations between covariates and Ortega parameters. For the Gini coefficient, simple Pearson correlations are516

sufficient, as this is a single-parameter inequality measurement approach. We use the Gini coefficient provided by the ACS517

dataset. One might argue that we should have used the Gini index implied by the empirical Lorenz curves we used in the Ortega518

parameter estimation. However, the US Census Bureau, which conducts the ACS, has more fine-grained data (inaccessible to519

the public) available to calculate the Gini index for each county highly accurately, which makes their Gini indices more reliable.520

In Supplementary Table 11, we provide an overview of potential outcomes and the frequency of their occurrence across our521

analysis. Case ID 1 can be interpreted as Ortega’s ability to disentangle (probably counteracting) effects related to inequality522

present in different parts of the income distribution, and case ID 2 might also shed light on a specific region of the income523

distribution being correlated to policy outcomes. For case ID 3, i.e., that neither Gini nor Ortega parameters show significant524

correlations, we have a coherent suggestion from both inequality measures that there is no association between inequality and525

the correlated variable. We also find coherent guidance on whether inequality is associated with a variable for case IDs 4 and 5.526

However, these cases show that use of the Ortega parameter might refine the insights we can obtain: while the Gini only reveals527

that there is an association between overall inequality and the variable, using the Ortega parameters, we can differentiate which528

part of the income distribution drives the significant correlation, including the magnitude. For case ID 6, i.e., that Gini is529

significant but none of the Ortega parameters are, the interpretation of such cases is rather puzzling. A potential interpretation530

is that in such cases, the association between inequality and the variable is driven by a feature of inequality that is captured531

through the Gini coefficient measuring overall inequality but is not explained by the concentration of income in different parts532

of the income distribution.533

Supplementary Table 11. Cases occurring in our exploratory study correlating 100 covariates with the Gini index and calculating partial
correlations between covariates and Ortega parameters.

Case ID Correlation with Gini coeffi-
cient 6= 0

Correlation with . . . Ortega
parameters 6= 0

Number of occurrences

1 no 2 12
2 no 1 21
3 no 0 8
4 yes 1 25
5 yes 2 34
6 yes 0 0

100 = total number of covari-
ates
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Supplementary Figure 17. Pearson correlations between inequality measures and county-level covariates. The plot shows Pearson correlations with the Gini index and
partial Pearson correlations with the Ortega parameters, i.e., the correlation between one Ortega parameter and the covariate while controlling for the other Ortega parameter
across N = 3 049 US counties. Pearson correlation point estimates are visualized within confidence bounds of the Bonferroni corrected confidence interval.
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Supplementary Figure 18. The plot shows Pearson correlations for instances of case ID 1 (see Supplementary Table 11) with the Gini index and partial Pearson correlations
with the Ortega parameters, i.e., the correlation between one Ortega parameter and the covariate while controlling for the other Ortega parameter across N = 3 049 US
counties. Pearson correlation point estimates are visualized within confidence bounds of the Bonferroni corrected confidence interval.
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Supplementary Figure 19. The plot shows Pearson correlations for instances of case ID 2 (see Supplementary Table 11) with the Gini index and partial Pearson correlations
with the Ortega parameters, i.e., the correlation between one Ortega parameter and the covariate while controlling for the other Ortega parameter across N = 3 049 US
counties. Pearson correlation point estimates are visualized within confidence bounds of the Bonferroni corrected confidence interval.
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Supplementary Figure 20. The plot shows Pearson correlations for instances of case ID 3 (see Supplementary Table 11) with the Gini index and partial Pearson correlations
with the Ortega parameters, i.e., the correlation between one Ortega parameter and the covariate while controlling for the other Ortega parameter across N = 3 049 US
counties. Pearson correlation point estimates are visualized within confidence bounds of the Bonferroni corrected confidence interval.
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Supplementary Figure 21. The plot shows Pearson correlations for instances of case ID 4 (see Supplementary Table 11) with the Gini index and partial Pearson correlations
with the Ortega parameters, i.e., the correlation between one Ortega parameter and the covariate while controlling for the other Ortega parameter across N = 3 049 US
counties. Pearson correlation point estimates are visualized within confidence bounds of the Bonferroni corrected confidence interval.
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Supplementary Figure 22. The plot shows Pearson correlations for instances of case ID 5 (see Supplementary Table 11) with the Gini index and partial Pearson correlations
with the Ortega parameters, i.e., the correlation between one Ortega parameter and the covariate while controlling for the other Ortega parameter across N = 3 049 US
counties. Pearson correlation point estimates are visualized within confidence bounds of the Bonferroni corrected confidence interval.
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15. Simulation Study: Minimum Dataset Requirements534

We introduce and evaluate three key criteria that datasets for inequality estimation need to possess in order for us to include535

them in this systematic “tournament-style” comparison to identify the best-fitting inequality measure given empirical income536

distributions. We find that such datasets need to contain (1) at least 15 or more data points per Lorenz curve; (2) at least two537

data points on top income shares above the 90th percentile of the income distribution; and (3) at least 60 Lorenz curves—and538

ideally, many more. We conducted numerous simulation studies, outlined in this section, to estimate these requirements.539

In the simulation study on data granularity in the SI, Section 10, we found that for a sufficient granularity (15+ data540

points), and in the absence of noise, the MLE procedure will detect the correct model in almost every case if it was generated541

by an Ortega model (>98% of cases; see Supplementary Table 4). However, empirical observations contain observational noise.542

Is the AICc procedure for a given granularity of, say, 20 data points—in the presence of observational noise—still able to detect543

Ortega? In this case, the number of Lorenz curves available becomes crucial; i.e., if the number of Lorenz curves is too small,544

the reduced certainty in detecting Ortega via AICc for each Lorenz curve could lead to a false overall conclusion. But how545

many Lorenz curves are necessary to reduce uncertainty to reasonable amounts?546

We quantify uncertainty in deciding the correct model for a given number of Lorenz curves (N) by considering each of the N547

Lorenz curves as independent draws from some Ortega Lorenz curve. Mathematically speaking, we can see AICc’s chance of548

success for detecting Ortega in each of the N Lorenz curves in terms of a Bernoulli distributed variable, i.e., AICc either detects549

Ortega (success = 1) or not (no success = 0). From this perspective, we can interpret the Bernoulli parameter p (probability of550

success) as the expected percentage of Ortega detections. For N Lorenz curves, we would expect to detect p · N Lorenz curves551

as Ortega. Note that for simplicity, we assume the researcher decides for Ortega if it is detected in the majority of cases; hence552

we require p>0.5.553

The crucial point of N is that the percentage of Ortega detections, which corresponds to the maximum likelihood estimate
of Bernoulli parameter p, will approximate the true value of p more accurately with increasing N: variation in estimated p
across sample sizes N is the actual quantity we are interested in when quantifying the uncertainty of determining the correct
model overall. We can derive the variance of this estimator analytically; i.e.,

Var(p̂) = p(1− p)
N

[17]

For the simulation, we vary the number of N Lorenz curves to be generated from some underlying Ortega Lorenz curve model,554

allowing for each of the N samples to exhibit different Ortega parameters, and a small normally distributed random noise555

term (mean = 0, sd = 0.002) to reflect observational noise. We then use our MLE procedure to fit various Lorenz curve556

models, let AICc determine the optimum model, and divide the number of detected Ortega models by N to get an estimate for557

p. Repeating this procedure 10 000 times gives us an estimate for the empirical standard deviation of estimated p, i.e., the558

standard deviation in the percentage of correctly classified Lorenz curves.559

Our results show that with increased sample size N, the standard deviation of the percentage of correct model detections560

decreases; critically, we show that at least 60 Lorenz curves are necessary to ensure that the share of correctly classified Lorenz561

curves is above 50%; see Supplementary Figure 23. When fewer than 60 Lorenz curves are available, the identification of the562

correct model is below 50%, reflecting the challenges of using datasets that contain fewer Lorenz curves, in line with criterion563

#3.564

In this simulation setup, we can further analyze the effects of sparse top-income data. In the base setting, we use equidistant565

population data shares with fixed granularity level (20 data points including population levels 0 and 1), i.e., a case where we566

have as much information on top-income shares as on any other parts of the income distribution. We compare this with a567

case where we have sparser information on top-income shares: we use the same granularity of 20 data points, but now these568

data points are shifted on the x-axis of the Lorenz curve toward the bottom of the income distribution, resulting in a lack of569

information on the top income percentiles. For example, if 1 out of the 20 data points is above the 90th percentile, this means570

that we have information on the bottom 90% of income earners and the 95th percentile, whereas in the case of 3 out of 20 data571

points being above the 90th percentile, we would have information on the bottom 90% of income earners and the 92.5th, 95th,572

and 97.5th percentiles. We see a considerable increase in the average percentage of true model detection as more information573

on top income earners is available; see Supplementary Figure 24. When fewer than two data points on top-income earners574

above the 90th percentile are available, the share of correctly identified models again drops below 50%, in line with criterion575

#2. Note that the number of Lorenz curves becomes irrelevant in this case: a higher number of Lorenz curves that do not576

contain top-income information do not improve our selection of the overall best-fitting model, given that p = 0.4 < 0.5 even577

when the estimated p converges with a large N. This analysis additionally reveals that our three criteria can not be treated578

separately but must be considered jointly.579
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Supplementary Figure 23. Uncertainty in true model detection: Variation in sample size
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Supplementary Figure 24. Uncertainty in true model detection: Variation in information density within top incomes
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